Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2024

The Influence of Hydroxyapatite Crystals on the Viscoelastic Behavior of Poly(vinyl alcohol) Braid Systems

Authors
Quinaz, T; Freire, TF; Olmos, A; Martins, M; Ferreira, FBN; de Moura, MFSM; Zille, A; Nguyen, Q; Xavier, J; Dourado, N;

Publication
BIOMIMETICS

Abstract
Composites of poly(vinyl alcohol) (PVA) in the shape of braids, in combination with crystals of hydroxyapatite (HAp), were analyzed to perceive the influence of this bioceramic on both the quasi-static and viscoelastic behavior under tensile loading. Analyses involving energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) allowed us to conclude that the production of a homogeneous layer of HAp on the braiding surface and the calcium/phosphate atomic ratio were comparable to those of natural bone. The maximum degradation temperature established by thermogravimetric analysis (TGA) showed a modest decrease with the addition of HAp. By adding HAp to PVA braids, an increase in the glass transition temperature (Tg) is noticed, as demonstrated by dynamic mechanical analysis (DMA) and differential thermal analysis (DTA). The PVA/HAp composite braids' peaks were validated by Fourier transform infrared (FTIR) spectroscopy to be in good agreement with common PVA and HAp patterns. PVA/HAp braids, a solution often used in the textile industry, showed superior overall mechanical characteristics in monotonic tensile tests. Creep and relaxation testing showed that adding HAp to the eight and six-braided yarn architectures was beneficial. By exhibiting good mechanical performance and most likely increased biological qualities that accompany conventional care for bone applications in the fracture healing field, particularly multifragmentary ones, these arrangements can be applied as a fibrous fixation system.

2024

Design of a sensor to estimate suspended sediment transport in situ using the measurements of water velocity, suspended sediment concentration and depth

Authors
Matos, T; Martins, MS; Henriques, R; Goncalves, LM;

Publication
JOURNAL OF ENVIRONMENTAL MANAGEMENT

Abstract
The sediment transport plays a major role in every aquatic ecosystem. However, the lack of instruments to monitor this process has been an obstacle to understanding its effects. We present the design of a single sensor built to measure water velocity, suspended sediment concentration and depth in situ, and how to associate the three variables to estimate and analyse sediment transport. During the laboratory calibrations, the developed instrument presented a resolution from 0.001 g/L to 0.1 g/L in the 0-12 g/L range for the measurement of suspended sediment concentration and 0.05 m/s resolution for 0-0.5 m/s range and 0.001 m/s resolution for 0.5-1 m/s range for the measurement of water velocity. The device was deployed for 6 days in an estuarine area with high sediment dynamics to evaluate its performance. During the field experiment, the sensor successfully measured the tidal cycles and consequent change of flow directions, and the suspended sediment concentration in the area. These measurements allowed to estimate water discharge and sediment transport rates during the different phases of tides, and the daily total volume of water and total amount of sediment passing through the estuary.

2024

Exploring local chlorine generation through seawater electrolysis to Extend optical sensor lifespan in marine environments

Authors
Matos, T; Pinto, VC; Sousa, PJ; Martins, MS; Fernández, E; Goncalves, LM;

Publication
CHEMICAL ENGINEERING JOURNAL

Abstract
Biofouling in marine optical sensors poses a significant challenge as it can compromise data accuracy and instrument functionality. This study investigates the effectiveness of local chlorine generation by seawater electrolysis in mitigating biological fouling and extending the operational lifespan of optical oceanographic instruments. Eight similar turbidity probes integrated with a local chlorine generation system, along with a turbidity probe constructed from ABS and another from PLA with copper filament, were developed for testing in the marine environment. The chlorine probes were designed into two groups: four utilizing standard FTO glass and four featuring FTO glass coated with platinum nanoparticles. Each set of probes employed different excitation currents for chlorine generation. All probes underwent laboratory calibration using formazine before deployment in a coastal environment for 97 days. The findings demonstrate a correlation with higher electrical power leading to prolonged operation intervals free from biofouling interference. Additionally, probes coated with platinum nanoparticles demonstrate higher performance in comparison to those with standard FTO glass. The copper probe did not effectively shield the optical transducers from microfouling, although it effectively demonstrated its efficacy in protecting the structural housing of the device. Overall, this work offers a compelling in situ demonstration of local chlorine generation as a promising strategy for enhancing the performance and longevity of optical oceanographic instruments in marine environments.

2024

A review of methods and instruments to monitor turbidity and suspended sediment concentration

Authors
Matos, T; Martins, MS; Henriques, R; Goncalves, LM;

Publication
JOURNAL OF WATER PROCESS ENGINEERING

Abstract
Turbidity and suspended sediment concentration are crucial parameters indicative of water quality, playing pivotal roles in evaluating the well-being of aquatic ecosystems and the effectiveness of water treatment processes. This manuscript provides an in-depth review of various methods and instruments in use for in situ and inline applications. The exploration of optical instrumentation is central to this review, examining its widespread use and current challenges within standard methods, commercial instruments and scientific research. The study also delves into alternative techniques, such as acoustic and capacitive methods, elucidating their applications, calibration intricacies, and practical considerations. Furthermore, the paper scrutinizes the emerging importance of satellite and aerial imaging processing as a supplementary tool for turbidity monitoring, underscoring its potential to offer comprehensive insights on a larger scale. The review emphasizes the key accomplishments and challenges of the state-of-the-art technologies, providing a comprehensive overview of the current stage of the field and its prospects. and aims to provide valuable insights for researchers, practitioners, and decision-makers involved in environmental monitoring and water facility management, enabling a deeper comprehension of the significance of turbidity and suspended sediment concentration in safeguarding water quality and ecosystem health.

2024

Dbd Plasma-Treated Polyester Fabric Coated with Doped Pedot:Pss for Thermoregulation

Authors
Magalhães, C; Ribeiro, AI; Rodrigues, R; Meireles, Â; Alves, A; Rocha, J; de Lima, FP; Martins, M; Mitu, B; Satulu, V; Dinescu, G; Padrão, J; Zille, A;

Publication

Abstract

2023

Single Receiver Underwater Localization of an Unsynchronized Periodic Acoustic Beacon Using Synthetic Baseline

Authors
Ferreira, BM; Graça, PA; Alves, JC; Cruz, NA;

Publication
IEEE JOURNAL OF OCEANIC ENGINEERING

Abstract
This article addresses the 3-D localization of a stand-alone acoustic beacon based on the Principle of Synthetic Baseline using a single receiver on board a surface vehicle. The process only uses the passive reception of an acoustic signal with no explicit synchronization, interaction, or communication with the acoustic beacon. The localization process exploits the transmission of periodic signals without synchronization to a known time reference to estimate the time-of-arrival (ToA) with respect to an absolute time basis provided by the global navigation satellite system (GNSS). We present the development of the acoustic signal acquisition system, the signal processing algorithms, the data processing of times-of-arrival, and an estimator that uses times-of-arrival and the coordinates where they have been collected to obtain the 3-D position of the acoustic beacon. The proposed approach was validated in a real field application on a search for an underwater glider lost in September 2021 near the Portuguese coast.

  • 15
  • 181