2021
Authors
Campos, R; Jorge, AM; Jatowt, A; Bhatia, S; Finlayson, MA; Cordeiro, JP; Rocha, C; Ribeiro, A; Mansouri, B; Ansah, J; Pasquali, A;
Publication
SIGIR Forum
Abstract
2022
Authors
Andrade, JR; Rocha, C; Silva, R; Viana, JP; Bessa, RJ; Gouveia, C; Almeida, B; Santos, RJ; Louro, M; Santos, PM; Ribeiro, AF;
Publication
IEEE ACCESS
Abstract
Network human operators' decision-making during grid outages requires significant attention and the ability to perceive real-time feedback from multiple information sources to minimize the number of control actions required to restore service, while maintaining the system and people safety. Data-driven event and alarm management have the potential to reduce human operator cognitive burden. However, the high complexity of events, the data semantics, and the large variety of equipment and technologies are key barriers for the application of Artificial Intelligence (AI) to raw SCADA data. In this context, this paper proposes a methodology to convert a large volume of alarm events into data mining terminology, creating the conditions for the application of modern AI techniques to alarm data. Moreover, this work also proposes two novel data-driven applications based on SCADA data: (i) identification of anomalous behaviors regarding the performance of the protection relays of primary substations, during circuit breaker tripping alarms in High Voltage (HV) and Medium Voltage (MV) lines; (ii) unsupervised learning to cluster similar events in HV line panels, classify new event logs based on the obtained clusters and membership grade with a control parameter that helps to identify rare events. Important aspects associated with data handling and pre-processing are also covered. The results for real data from a Distribution System Operator (DSO) showed: (i) that the proposed method can detect unexpected relay pickup events, e.g., one substation with nearly 41% of the circuit breaker alarms had an 'atypical' event in their context (revealed an overlooked problem on the electrification of a protection relay); (ii) capability to automatically detect and group issues into specific clusters, e.g., SF6 low-pressure alarms and blocks with abnormal profiles caused by event time-delay problems.
2022
Authors
Rocha, C; Mendonça, T; Silva, ME;
Publication
IEEE Conference on Control Technology and Applications, CCTA 2022, Trieste, Italy, August 23-25, 2022
Abstract
This paper aims at contributing to personalize anesthetic drug administration during surgery. This study devel-ops an online robust model to predict the maintenance dose of atracurium necessary for the resulting effect, i.e. neuromuscular blockade, to attain a target profile. The model is based on the patient's neuromuscular blockade (NMB) response to the initial bolus only, overcoming the need for information on the patient's weight, age, height and Lean Body Mass usually associated to pharmacokinetic and pharmacodynamic models. To achieve this, a statistical analysis of the response of the patient to the initial bolus is carried out and a set of variables is established as predictors of the maintenance dose. The prediction is accomplished using Classification and Regression Trees, CART, which is a supervised learning method. Simulated data from a stochastic model for the NMB induced by atracurium is used as training set. All the 5000 doses predicted by the model lead to NMB level between 5% and 10%, which supports the proposed predictive model since it is clinically required that the steady state NMB level lies between this two values. The methodology is applied both to simulated and to clinical data sets and is found appropriate for online dose prediction.
2025
Authors
Campos, R; Jorge, AM; Jatowt, A; Bhatia, S; Litvak, M; Cordeiro, JP; Rocha, C; Sousa, HO; Cunha, LF; Mansouri, B;
Publication
SIGIR Forum
Abstract
2014
Authors
Maria da Conceição de Oliveira Nunes Rocha;
Publication
Abstract
2025
Authors
, A; Rocha, C; Campos, P;
Publication
Machine Learning Perspectives of Agent-Based Models
Abstract
The present work is inspired by the aftermarket companies of the automotive industry. The goal is to investigate how companies react to market change, by understanding the effect of a perturbation (such as a business cessation) on the rest of the companies that are interconnected through peer-to-peer relationships. An agent-based model has been developed that simulates a multilayer network involving different types of companies: suppliers, aftermarket companies; retailers and consumers. The effect of the cessation is measured by the resilience of the multilayer network after suffering the perturbation. The multilayer network is inspired in a business model of the automobile industry’s aftermarket and each type of company has some defined characteristics. The agent-based model produces the network dynamics due to the changes in its configuration throughout time. No learning mechanism is introduced in this work. We demonstrate that the number of links, the volume of sales and the total profit of a node in the network has an impact on its survival throughout time. © 2025 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.