Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Filipe Monteiro Silva

2023

LIBS-Based Analysis of Elemental Composition in Skin, Pulp, and Seeds of White and Red Grape Cultivars

Authors
Tosin, R; Monteiro Silva, F; Martins, R; Cunha, M;

Publication
CSAC 2023

Abstract

2023

Antimicrobial Effects and Antioxidant Activity of Myrtus communis L. Essential Oil in Beef Stored under Different Packaging Conditions

Authors
Moura, D; Vilela, J; Saraiva, S; Monteiro-Silva, F; De Almeida, JMMM; Saraiva, C;

Publication
FOODS

Abstract
The aim of this study was to assess the antimicrobial effects of myrtle (Myrtus communis L.) essential oil (EO) on pathogenic (E. coli O157:H7 NCTC 12900; Listeria monocytogenes ATCC BAA-679) and spoilage microbiota in beef and determine its minimum inhibitory concentration (MIC) and antioxidant activity. The behavior of LAB, Enterobacteriaceae, Pseudomonas spp., and fungi, as well as total mesophilic (TM) and total psychotropic (TP) counts, in beef samples, was analyzed during storage at 2 and 8 C-degrees in two different packaging systems (aerobiosis and vacuum). Leaves of myrtle were dried, its EO was extracted by hydrodistillation using a Clevenger-type apparatus, and the chemical composition was determined using chromatographical techniques. The major compounds obtained were myrtenyl acetate (15.5%), beta-linalool (12.3%), 1,8-cineole (eucalyptol; 9.9%), geranyl acetate (7.4%), limonene (6.2%), alpha-pinene (4.4%), linalyl o-aminobenzoate (5.8%), alpha-terpineol (2.7%), and myrtenol (1.2%). Myrtle EO presented a MIC of 25 mu L/mL for E. coli O157:H7 NCTC 12900, E. coli, Listeria monocytogenes ATCC BAA-679, Enterobacteriaceae, and E. coli O157:H7 ATCC 35150 and 50 mu L/mL for Pseudomonas spp. The samples packed in aerobiosis had higher counts of deteriorative microorganisms than samples packed under vacuum, and samples with myrtle EO presented the lowest microbial contents, indicating good antimicrobial activity in beef samples. Myrtle EO is a viable natural alternative to eliminate or reduce the pathogenic and deteriorative microorganisms of meat, preventing their growth and enhancing meat safety.

2023

Reagent-less spectroscopy towards NPK sensing for hydroponics nutrient solutions

Authors
Silva, FM; Queirós, C; Pinho, T; Boaventura, J; Santos, F; Barroso, TG; Pereira, MR; Cunha, M; Martins, RC;

Publication
SENSORS AND ACTUATORS B-CHEMICAL

Abstract
Nutrient quantification in hydroponic systems is essential. Reagent-less spectral quantification of nitrogen, phosphate and potassium faces challenges in accessing information-rich spectral signals and unscrambling interference from each constituent. Herein, we introduce information equivalence between spectra and sample composition, enabling extraction of consistent covariance to isolate nutrient-specific spectral information (N, P or K) in Hoagland nutrient solutions using orthogonal covariance modes. Chemometrics methods quantify nitrogen and potassium, but not phosphate. Orthogonal covariance modes, however, enable quantification of all three nutrients: nitrogen (N) with R = 0.9926 and standard error of 17.22 ppm, phosphate (P) with R = 0.9196 and standard error of 63.62 ppm, and potassium (K) with R = 0.9975 and standard error of 9.51 ppm. Including pH information significantly improves phosphate quantification (R = 0.9638, standard error: 43.16 ppm). Results demonstrate a direct relationship between spectra and Hoagland nutrient solution information, preserving NPK orthogonality and supporting orthogonal covariance modes. These modes enhance detection sensitivity by maximizing information of the constituent being quantified, while minimizing interferences from others. Orthogonal covariance modes predicted nitrogen (R = 0.9474, standard error: 29.95 ppm) accurately. Phosphate and potassium showed strong interference from contaminants, but most extrapolation samples were correctly diagnosed above the reference interval (83.26%). Despite potassium features outside the knowledge base, a significant correlation was obtained (R = 0.6751). Orthogonal covariance modes use unique N, P or K information for quantification, not spurious correlations due to fertilizer composition. This approach minimizes interferences during extrapolation to complex samples, a crucial step towards resilient nutrient management in hydroponics using spectroscopy.

2012

Naphthalene-based fluorophores: Structure, properties and applications

Authors
Silva, AMG; Queiros, C; Monteiro Silva, F;

Publication
Naphthalene: Structure, Properties and Applications

Abstract
Naphthalene-based fluorophores have been widely used in different applications such as fluorescent sensors, biological/medical labels, in the development of lightharvesting systems and materials for light-emitting diodes. Typically, the naphthalene scaffold has low molecular weight and its properties depend strongly on the number, type and position of the substituent groups in the ring. Although the unsubstituted naphthalene is poorly fluorescent, when donor and acceptor groups are attached to positions 2 and 6 of the ring, the fluorescence increases significantly through an Intramolecular Charge Transfer (ICT) mechanism. Substantial changes in the fluorescence spectrum, quantum yield and lifetime are often observed with solvent changes or as a result of binding to a substrate. All aspects related with the design, synthesis and photophysical properties of the naphthalene-based fluorophores will be highlighted in this chapter. Also, naphthalene-based fluorescent chemosensors incorporating a specific binding site for sensing cations and anions will also be focused in this chapter.

  • 4
  • 4