2022
Authors
Riesenegger, L; Santos, MJ; Ostermeier, M; Martins, S; Amorim, P; Hübner, A;
Publication
SSRN Electronic Journal
Abstract
2025
Authors
Amorim, P; Eng Larsson, F; Hübner, A;
Publication
International Journal of Production Economics
Abstract
This special issue showcases state-of-the-art research at the intersection of analytics and retail operations. As the retail landscape becomes increasingly complex – driven by omnichannel strategies, evolving customer expectations, and a surge in data availability – analytics has emerged as a critical enabler of operational efficiency, customer experience, responsiveness, and sustainability and ethics. Collectively, these contributions demonstrate how advanced analytics can support retailers in navigating uncertainty, personalizing services, and scaling up innovation across formats and channels. The articles featured in this issue address a diverse set of decision domains, including warehousing, inventory and assortment planning, and distribution and last-mile delivery. Methodologically, they span descriptive, prescriptive, and hybrid approaches, leveraging tools such as machine learning, stochastic modeling, and dynamic optimization. By grounding models in real-world data and focusing on practical implementation, the issue provides actionable insights for both scholars and practitioners. It also highlights emerging opportunities for future research on behavioral integration, human-machine collaboration, and the ethical dimensions of retail analytics. © 2025 Elsevier B.V.
2025
Authors
Amorim, P; Eng-Larsson, F; Rooderkerk, RP;
Publication
JOURNAL OF RETAILING
Abstract
In online grocery retail, out-of-stocks can cause order fulfillment failures. Store-based fulfillment models have heightened this challenge. Here, online customers often receive orders not fulfilled as expected, with products being substituted, partially fulfilled, or reimbursed. When order fulfillment fails, the customer may change future ordering behavior by delaying the next order or by spending less in the online channel. Using data from the online operation of a leading omnichannel grocery retailer, we evaluate the magnitude of impact on the next order when the prior one is not fulfilled as expected. We also explore the role of retailer efforts in mitigating this impact. We find that failures significantly delay the time to the next order by 7.22% on average, with delays becoming more pronounced for non-perishable products. Spending reductions are especially evident when promoted items fail to ship. Mitigation efforts, substitutions in particular, often exacerbate delays and compound the dissatisfaction. Although substitutions help recover lost sales, they negatively impact future customer behavior. This suggests that selective stockout prevention, coupled with improved substitution practices, should be prioritized to optimize economic and customer outcomes.
2024
Authors
Amorim, P; Alves, J;
Publication
MIT SLOAN MANAGEMENT REVIEW
Abstract
[No abstract available]
2025
Authors
Fernandes, D; Neves-Moreira, F; Amorim, P;
Publication
TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW
Abstract
Retailers offering Attended Home Delivery (AHD) struggle with thin profit margins due to high delivery costs and constrained routing flexibility. AHD requires retailers and customers to agree on specific time windows, limiting operational efficiency and increasing fleet requirements, particularly when customer preferences tend to cluster around peak times. While retailers have some ability to influence customer choices through pricing and availability strategies, failing to account for fleet costs and delivery constraints can lead to inefficient operations and reduced profitability. This study introduces an integrated approach to fleet sizing and time-window pricing for price-sensitive customers. We propose a Mixed Integer Programming (MIP) model that maximizes profit by balancing revenue and delivery costs, leveraging a nonparametric rank-based choice model to capture customer behavior while explicitly considering routing constraints and fleet ownership expenses over multiple periods. Using computational experiments on small-sized instances inspired by real-world data, we evaluate the impact of explicitly modeling routing costs, compare different pricing strategies, examine the effects of multi-period fleet planning, and assess sensitivity to varying customer and cost conditions. Results show that explicitly modeling routing constraints reduces profit loss by 29% compared to traditional cost approximations but increases computational complexity. To address this, we develop a Fix & Optimize (F&O) matheuristic approximate solution method that enables the application of our model to larger instances. Our findings emphasize the need for retailers to integrate demand management and fleet planning to optimize operational profitability.
2025
Authors
Lunet, M; Fernandes, D; Neves-Moreira, F; Amorim, P;
Publication
PROCEEDINGS OF THE 2025 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2025
Abstract
To get products delivered, clients and retailers agree on a delivery time window. We collaborated with an online retailer to develop a real-world application aimed at dynamically determining the delivery fee for each time window while ensuring the explainability of the pricing policy. This sequential decision-making problem arises as new customers continuously arrive. The objective is to maximize the final profit, given by the sum of baskets and delivery fees, discounted by the transportation and fleet costs. As multiple customers share the same delivery route, the costs are distributed among them, complicating the calculation of the marginal cost of each customer. Our study employs Genetic Programming (GP) to create explainable and easy-to-compute pricing policies to determine the delivery fees. These policies, expressed as mathematical formulas, rank price panels combinations of time slots and corresponding fees to identify optimal prices for each customer. The inputs to the GP algorithm capture the current state of the system, including factors such as capacity, customer location, and basket value. The resulting expressions offer operational managers a transparent pricing policy that allows them to maximize total profit.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.