2022
Authors
Veloso, B; Gama, J; Ribeiro, RP; Pereira, P;
Publication
Abstract
2025
Authors
Liguori, A; Caroprese, L; Minici, M; Veloso, B; Spinnato, F; Nanni, M; Manco, G; Gama, J;
Publication
NEUROCOMPUTING
Abstract
In real-world scenarios, numerous phenomena generate a series of events that occur in continuous time. Point processes provide a natural mathematical framework for modeling these event sequences. In this comprehensive survey, we aim to explore probabilistic models that capture the dynamics of event sequences through temporal processes. We revise the notion of event modeling and provide the mathematical foundations that underpin the existing literature on this topic. To structure our survey effectively, we introduce an ontology that categorizes the existing approaches considering three horizontal axes: modeling, inference and estimation, and application. We conduct a systematic review of the existing approaches, with a particular focus on those leveraging deep learning techniques. Finally, we delve into the practical applications where these proposed techniques can be harnessed to address real-world problems related to event modeling. Additionally, we provide a selection of benchmark datasets that can be employed to validate the approaches for point processes.
2022
Authors
Veloso, B; Gama, J; Ribeiro, RP; Pereira, PM;
Publication
SCIENTIFIC DATA
Abstract
The paper describes the MetroPT data set, an outcome of a Predictive Maintenance project with an urban metro public transportation service in Porto, Portugal. The data was collected in 2022 to develop machine learning methods for online anomaly detection and failure prediction. Several analog sensor signals (pressure, temperature, current consumption), digital signals (control signals, discrete signals), and GPS information (latitude, longitude, and speed) provide a framework that can be easily used and help the development of new machine learning methods. This dataset contains some interesting characteristics and can be a good benchmark for predictive maintenance models.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.