Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by João Barroso

2023

A Machine Learning Tool to Monitor and Forecast Results from Testing Products in End-of-Line Systems

Authors
Nunes, C; Nunes, R; Pires, EJS; Barroso, J; Reis, A;

Publication
APPLIED SCIENCES-BASEL

Abstract
The massive industrialization of products in a factory environment requires testing the product at a stage before its exportation to the sales market. For example, the end-of-line tests at Continental Advanced Antenna contribute to the validation of an antenna's functionality, a product manufactured by this organization. In addition, the storage of information from the testing process allows the data manipulation through automated machine learning algorithms in search of a beneficial contribution. Studies in this area (automatic learning/machine learning) lead to the search and development of tools designed with objectives such as preventing anomalies in the production line, predictive maintenance, product quality assurance, forecast demand, forecasting safety problems, increasing resources, proactive maintenance, resource scalability, reduced production time, and anomaly detection, isolation, and correction. Once applied to the manufacturing environment, these advantages make the EOL system more productive, reliable, and less time-consuming. This way, a tool is proposed that allows the visualization and previous detection of trends associated with faults in the antenna testing system. Furthermore, it focuses on predicting failures at Continental's EOL.

2023

A Model for Cognitive Personalization of Microtask Design

Authors
Paulino, D; Guimaraes, D; Correia, A; Ribeiro, J; Barroso, J; Paredes, H;

Publication
SENSORS

Abstract
The study of data quality in crowdsourcing campaigns is currently a prominent research topic, given the diverse range of participants involved. A potential solution to enhancing data quality processes in crowdsourcing is cognitive personalization, which involves appropriately adapting or assigning tasks based on a crowd worker's cognitive profile. There are two common methods for assessing a crowd worker's cognitive profile: administering online cognitive tests, and inferring behavior from task fingerprinting based on user interaction log events. This article presents the findings of a study that investigated the complementarity of both approaches in a microtask scenario, focusing on personalizing task design. The study involved 134 unique crowd workers recruited from a crowdsourcing marketplace. The main objective was to examine how the administration of cognitive ability tests can be used to allocate crowd workers to microtasks with varying levels of difficulty, including the development of a deep learning model. Another goal was to investigate if task fingerprinting can be used to allocate crowd workers to different microtasks in a personalized manner. The results indicated that both objectives were accomplished, validating the usage of cognitive tests and task fingerprinting as effective mechanisms for microtask personalization, including the development of a deep learning model with 95% accuracy in predicting the accuracy of the microtasks. While we achieved an accuracy of 95%, it is important to note that the small dataset size may have limited the model's performance.

2019

Expert Crowdsourcing for Semantic Annotation of Atmospheric Phenomena

Authors
Liberato, M; Paredes, H; Ramos, A; Reis, A; Hénin, R; Barroso, J;

Publication

Abstract

2026

Data Governance Meets Generative Artificial Intelligence: Towards A Unified Organizational Framework

Authors
Bernardo, BMV; Mamede, HS; Barroso, JMP; Naranjo-Zolotov, M; Duarte dos Santos, VMP;

Publication
Emerging Science Journal

Abstract
As technology continues to evolve, organizations face growing and complex challenges and opportunities that affect their ability to govern, manage and harness data as a key source of competitive advantage. Equally, data are considered a powerful and unique source of success for organizations, which in turn, can impact their decision-making capabilities and play a critical role in their success. Hence, this article aims to provide a detailed identification, analysis and discussion over the current data governance context and its existing frameworks, highlighting their commonalities, differences and gaps, including ones related to data governance relationship with Generative Artificial Intelligence (GenAI). This article conducts an extensive methodological and in-depth analysis over a set of sixteen data governance frameworks based on different key data governance attributes, denoting that although there are numerous frameworks, they hold weaknesses, limitations and challenges which prevent them from being capable of incorporating and governing the use and management of AI, particularly the demands originating from GenAI. Our findings provide and propose a new and enhanced data governance framework which integrates the best features and ideas from the existing ones and initiatives derived from the advancements and particularities of AI and GenAI models, systems, and overall usage.

  • 51
  • 51