2023
Authors
Monteiro, P; Lima, C; Pinto, T; Nogueira, P; Reis, A; Filipe, V;
Publication
Distributed Computing and Artificial Intelligence, Special Sessions I, 20th International Conference, Guimaraes, Portugal, 12-14 July 2023.
Abstract
Industry 4.0 was publicly introduced in Germany in 2011 and is known as the fourth industrial revolution, whose goal is to improve manufacturing processes and increase the competitiveness of the manufacturing industry. Industry 4.0 uses technological concepts such as Cyber-Physical Systems, Internet of Things and Cloud Computing to create services, reduce costs and increase productivity in industry. This paper aims to explore the use of context-aware applications in Industry 4.0 in order to assist workers in decision making and thus improve the performance of factory production lines. This literature review is part of the project “Continental AA’s Factory of the Future” (Continental FoF) and will integrate a context-aware system in Industry 4.0 of the mentioned company, which is a manufacturer of radio frequency devices for the automotive industry. This systematic literature review identifies, from the researched solutions, the concept of context and context-awareness, the main technologies used in context-aware systems, how context management is performed, as well as the most used integration and communication protocols. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2023
Authors
Couto, P; Filipe, V;
Publication
APPLIED SCIENCES-BASEL
Abstract
[No abstract available]
2024
Authors
Ribeiro, J; Pinheiro, R; Soares, S; Valente, A; Amorim, V; Filipe, V;
Publication
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: ESTABLISHING BRIDGES FOR MORE SUSTAINABLE MANUFACTURING SYSTEMS, FAIM 2023, VOL 2
Abstract
The manual monitoring of refilling stations in industrial environments can lead to inefficiencies and errors, which can impact the overall performance of the production line. In this paper, we present an unsupervised detection pipeline for identifying refilling stations in industrial environments. The proposed pipeline uses a combination of image processing, pattern recognition, and deep learning techniques to detect refilling stations in visual data. We evaluate our method on a set of industrial images, and the findings demonstrate that the pipeline is reliable at detecting refilling stations. Furthermore, the proposed pipeline can automate the monitoring of refilling stations, eliminating the need for manual monitoring and thus improving industrial operations' efficiency and responsiveness. This method is a versatile solution that can be applied to different industrial contexts without the need for labeled data or prior knowledge about the location of refilling stations.
2023
Authors
Ribeiro, J; Pinheiro, R; Nogueira, P; Reis, A; Filipe, V;
Publication
Lecture Notes in Networks and Systems
Abstract
In industrial environments, the measurement and monitoring of filling levels (FL) in refilling stations (RS) are critical for quality control processes. Traditional methods used for this purpose, such as manual inspection and sensor-based techniques, have proven to be costly and time-consuming. As an alternative, this paper proposes a novel approach that leverages computer vision (CV) and advanced image processing techniques. This approach provides a more efficient and accurate method for monitoring filling levels in refilling stations, thereby reducing operational costs. The system operates through a comprehensive five-stage pipeline, including pre-processing, perspective transformation, thresholding and edge detection, post-processing and filling level calculation. The performance evaluation of this approach demonstrated promising results in accurately determining filling levels in most scenarios. However, we also identified challenges such as overlapping columns and occlusions in the camera’s field of view that require further improvements. By addressing these challenges, our research aims to develop a streamlined and automated method for filling level measurement in refilling stations, thereby enhancing productivity in industrial environments. Ultimately, this proposed approach holds potential to significantly improve the efficiency of refilling stations across multiple sectors. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2024
Authors
Teixeira, P; Amorim, EV; Nagel, J; Filipe, V;
Publication
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: ESTABLISHING BRIDGES FOR MORE SUSTAINABLE MANUFACTURING SYSTEMS, FAIM 2023, VOL 1
Abstract
Artificial intelligence (AI) has gained significant evolution in recent years that, if properly harnessed, may meet or exceed expectations in a wide range of application fields. However, because Machine Learning (ML) models have a black-box structure, end users frequently seek explanations for the predictions made by these learning models. Through tools, approaches, and algorithms, Explainable Artificial Intelligence (XAI) gives descriptions of black-box models to better understand the models' behaviour and underlying decision-making mechanisms. The AI development in companies enables them to participate in Industry 4.0. The need to inform users of transparent algorithms has given rise to the research field of XAI. This paper provides a brief overview and introduction to the subject of XAI while highlighting why this topic is generating more and more attention in many sectors, such as industry.
2023
Authors
Nascimento, R; Ferreira, T; Rocha, C; Filipe, V; Silva, MF; Veiga, G; Rocha, L;
Publication
2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Quality control inspection systems are crucial and a key factor in maintaining and ensuring the integrity of any product. The quality inspection task is a repetitive task, when performed by operators only, it can be slow and susceptible to failures due to the lack of attention and fatigue. This work focuses on the inspection of parts made of high-pressure diecast aluminum for components of the automotive industry. In the present case study, last year, 18240 parts needed to be reinspected, requiring approximately 96 hours, a time that could be spent on other tasks. This article performs a comparison of four deep learning models: Faster R-CNN, RetinaNet, YOLOv7, and YOLOv7-tiny, to find out which one is more suited to perform the quality inspection task of detecting metal filings on casting aluminum parts. As for this use-case the prototype must be highly intolerant to False Negatives, that is, the part being defective and passing undetected, Faster R-CNN was considered the bestperforming model based on a Recall value of 96.00%.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.