Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by José Boaventura

2022

State of the Art on Advanced Control of Electric Energy Transformation to Hydrogen

Authors
Puga, R; Boaventura, J; Ferreira, J; Madureira, A;

Publication
INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021

Abstract
The need for sustainable power production has led to the development of more innovative approaches to production and storage. In light of this hydrogen production through wind power has emerged as sufficient in ensuring that the objectives of the Paris Agreement are made. This paper discusses the state-of-art models and controls used in ensuring that greater efficiency is achieved in the processes of energy to hydrogen transformation. The paper concludes with a comparison of the models and determination of one which suffices in ensuring that hydrogen/energy transformation is more efficient.

2022

Dynamic Modelling of a Thermal Solar Heating System

Authors
Boaventura-Cunha, J; Ferreira, J;

Publication
INNOVATIONS IN BIO-INSPIRED COMPUTING AND APPLICATIONS, IBICA 2021

Abstract
Nowadays the world faces the challenge to rapidly diminish the use of fossil fuels in order to reduce pollutants and the emission of greenhouse gases and to mitigate the global warming. Renewable energies, such as solar radiation, among others, are playing a relevant role in this context. Namely, the use of thermal energy storage systems in buildings and industry is increasing enabling to reduce operational costs and carbon dioxide emissions. Heat storage systems based in solar thermal panels for heating water in buildings are industrially mature but some improvements can be made to improve their efficiencies. In this work are presented the methods and the results achieved to model the dynamic behavior of the hot water temperature as function of the weather, operating conditions and technical parameters of the thermal solar system. This type of dynamic models will enable to optimize the efficiency of this type of systems regarding the use of auxiliary energy sources to heat the water whenever the temperature in the storage tank falls below a defined threshold level. As future work it is intended to use adaptive control algorithms to reduce the use of backup power sources (electricity, oil, gas) by using the information of the system status as well predictions for hot water consumption profiles and solar radiation.

2021

Routing and schedule simulation of a biomass energy supply chain through SimPy simulation package

Authors
Pinho T.M.; Coelho J.P.; Oliveira P.M.; Oliveira B.; Marques A.; Rasinmäki J.; Moreira A.P.; Veiga G.; Boaventura-Cunha J.;

Publication
Applied Computing and Informatics

Abstract
The optimisation of forest fuels supply chain involves several entities actors, and particularities. To successfully manage these supply chains, efficient tools must be devised with the ability to deal with stakeholders dynamic interactions and to optimize the supply chain performance as a whole while being stable and robust, even in the presence of uncertainties. This work proposes a framework to coordinate different planning levels and event-based models to manage the forest-based supply chain. In particular, with the new methodology, the resilience and flexibility of the biomass supply chain is increased through a closed-loop system based on the system forecasts provided by a discrete-event model. The developed event-based predictive model will be described in detail, explaining its link with the remaining elements. The implemented models and their links within the proposed framework are presented in a case study in Finland and results are shown to illustrate the advantage of the proposed architecture.

2026

A review of visual perception for robotic bin-picking

Authors
Cordeiro, A; Rocha, LF; Boaventura-Cunha, J; Figueiredo, D; Souza, JP;

Publication
ROBOTICS AND AUTONOMOUS SYSTEMS

Abstract
Robotic bin-picking is a critical operation in modern industry, which is characterised by the detection, selection, and placement of items from a disordered and cluttered environment, which can be boundary limited or not, e.g. bins, boxes or containers. In this context, perception systems are employed to localise, detect and estimate grasping points. Despite the considerable progress made, from analytical approaches to recent deep learning methods, challenges still remain. This is evidenced by the growing innovation proposing distinct solutions. This paper aims to review perception methodologies developed since 2009, providing detailed descriptions and discussions of their implementation. Additionally, it presents an extensive study, detailing each work, along with a comprehensive overview of the advancements in bin-picking perception.

2025

PID Control with TCLab: An Unified Experiment for Undergraduates

Authors
Oliveira, PBD; Cunha, JB;

Publication
IFAC PAPERSONLINE

Abstract
Portable, pocket-sized laboratories offer a cost-effective means for students to conduct control experiments outside the classroom. Broad access to such laboratories can help bridge the gap between theoretical knowledge and practical application. The Temperature Control Laboratory (TCLab) is one such portable kit that has been effectively utilized for teaching and learning control engineering. Building on experience with TCLab since 2018, we propose a unified experiment focused on PID control. This experiment was integrated into a Modeling and Control Engineering course for Biomedical Engineering undergraduates at UTAD. The students' feedback indicates strong interest and underscores the value of this handson experience. Copyright (c) 2025 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)

2025

Object segmentation dataset generation framework for robotic bin-picking: Multi-metric analysis between results trained with real and synthetic data

Authors
Cordeiro, A; Rocha, LF; Boaventura-Cunha, J; Pires, EJS; Souza, JP;

Publication
COMPUTERS & INDUSTRIAL ENGINEERING

Abstract
The implementation of deep learning approaches based on instance segmentation data remains a challenge for customized scenarios, owing to the time-consuming nature of acquiring and annotating real-world instance segmentation data, which requires a significant investment of semi-professional user labour. Obtaining high-quality labelled data demands expertise and meticulous attention to detail. This requirement can significantly impact the overall implementation process, adding to the complexity and resource requirements of customized scenarios with diverse objects. The proposed work addresses the challenge of generating labelled data for large-scale robotic bin-picking datasets by proposing an easy-to-use automated framework designed to create customized data with accurate labels from CAD models. The framework leverages a photorealistic rendering engine integrated with physics simulation, minimizing the gap between synthetic and real-world data. Models trained using the synthetic data generated by this framework achieved an Average Precision of 86.95%, comparable to the performance of models trained on real-world datasets. Furthermore, this paper provides a comprehensive multi-metric analysis across diverse objects representing distinct industrial applications, including naval, logistics, and aerospace domains. The evaluation also includes the use of three distinct instance segmentation networks, alongside a comparative analysis of the proposed approach against two generative model techniques.

  • 13
  • 26