2024
Authors
Rebelo, PM; Lima, J; Soares, SP; Oliveira, PM; Sobreira, H; Costa, P;
Publication
SENSORS
Abstract
The flexibility and versatility associated with autonomous mobile robots (AMR) have facilitated their integration into different types of industries and tasks. However, as the main objective of their implementation on the factory floor is to optimize processes and, consequently, the time associated with them, it is necessary to take into account the environment and congestion to which they are subjected. Localization, on the shop floor and in real time, is an important requirement to optimize the AMRs' trajectory management, thus avoiding livelocks and deadlocks during their movements in partnership with manual forklift operators and logistic trains. Threeof the most commonly used localization techniques in indoor environments (time of flight, angle of arrival, and time difference of arrival), as well as two of the most commonly used indoor localization methods in the industry (ultra-wideband, and ultrasound), are presented and compared in this paper. Furthermore, it identifies and compares three industrial indoor localization solutions: Qorvo, Eliko Kio, and Marvelmind, implemented in an industrial mobile platform, which is the main contribution of this paper. These solutions can be applied to both AMRs and other mobile platforms, such as forklifts and logistic trains. In terms of results, the Marvelmind system, which uses an ultrasound method, was the best solution.
2024
Authors
Teixeira, FL; Soares, SP; Abreu, JLP; Oliveira, PM; Teixeira, JP;
Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT I, OL2A 2023
Abstract
The paper presents the comparison of accuracy in the Speech Emotion Recognition task using the Hamming and Hanning windows for framing the speech and determining the spectrogram to be used as input of a convolutional neural network. The detection of between 4 and 10 emotional states was tested for both windows. The results show significant differences in accuracy between the two window types and provide valuable insights for the development of more efficient emotional state detection systems. The best accuracy between 4 and 10 emotions was 64.1% (4 emotions), 57.8% (5 emotions), 59.8% (6 emotions), 48.4% (7 emotions), 47.8% (8 emotions), 51.4% (9 emotions), and 45.9% (10 emotions). These accuracy is at the state-of-the art level.
2019
Authors
Paulo Moura Oliveira; Paulo Novais; Luís Paulo Reis;
Publication
Abstract
2022
Authors
Barbosa, D; Solteiro Pires, EJ; Leite, A; Moura Oliveira, PBd;
Publication
Wireless Mobile Communication and Healthcare - 11th EAI International Conference, MobiHealth 2022, Virtual Event, November 30 - December 2, 2022, Proceedings
Abstract
Ventricular tachyarrhythmia (VTA), mainly ventricular tachycardia (VT) and ventricular fibrillation (VF) are the major causes of sudden cardiac death in the world. This work uses deep learning, more precisely, LSTM and biLSTM networks to predict VTA events. The Spontaneous Ventricular Tachyarrhythmia Database from PhysioNET was chosen, which contains 78 patients, 135 VTA signals, and 135 control rhythms. After the pre-processing of these signals and feature extraction, the classifiers were able to predict whether a patient was going to suffer a VTA event or not. A better result using a biLSTM was obtained, with a 5-fold-cross-validation, reaching an accuracy of 96.30%, 94.07% of precision, 98.45% of sensibility, and 96.17% of F1-Score. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
2013
Authors
Paulo Moura Oliveira; Paulo Novais; Luís Paulo Reis;
Publication
Abstract
2024
Authors
Schneider, S; Parada, E; Sengl, D; Baptista, J; Oliveira, PM;
Publication
FRONTIERS IN SUSTAINABLE CITIES
Abstract
Despite the ubiquitous term climate neutral cities, there is a distinct lack of quantifiable and meaningful municipal decarbonization goals in terms of the targeted energy balance and composition that collectively connect to national scenarios. In this paper we present a simple but useful allocation approach to derive municipal targets for energy demand reduction and renewable expansion based on national energy transition strategies in combination with local potential estimators. The allocation uses local and regional potential estimates for demand reduction and the expansion of renewables and differentiates resulting municipal needs of action accordingly. The resulting targets are visualized and opened as a decision support system (DSS) on a web-platform to facilitate the discussion on effort sharing and potential realization in the decarbonization of society. With the proposed framework, different national scenarios, and their implications for municipal needs for action can be compared and their implications made explicit.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.