Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Elsa Marília Silva

2010

An integer programming model for two- and three-stage two-dimensional cutting stock problems

Authors
Silva, E; Alvelos, F; Valerio de Carvalho, JMV;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
In this paper, an integer programming model for two-dimensional cutting stock problems is proposed. In the problems addressed, it is intended to cut a set of small rectangular items of given sizes from a set of larger rectangular plates in such a way that the total number of used plates is minimized. The two-stage and three-stage, exact and non-exact, problems are considered. Other issues are also addressed, as the rotation of items, the length of the cuts and the value of the remaining plates. The new integer programming model can be seen as an extension of the "one-cut model" proposed by Dyckhoff for the one-dimensional cutting stock problem. In the proposed model, each decision variable is associated with cutting one item from a plate or from a part of a plate resulting from previous cuts (residual plates). Comparative computational results of the proposed model and of models from the literature are presented and discussed.

2023

Cutting and packing problems under uncertainty: literature review and classification framework

Authors
Salem, KH; Silva, E; Oliveira, JF;

Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
Cutting and packing problems are hard combinatorial optimization problems that arise in several manufacturing and process industries or in their supply chains. The solution of these problems is not only a scientific challenge but also has a large economic impact, as it contributes to the reduction of one of the major cost factors for many production sectors, namely raw materials, together with a positive environmental impact. The explicit consideration of uncertainty when solving cutting and packing problems with optimization techniques is crucial for a wider adoption of research results by companies. However, current research has paid little attention to the role of uncertainty in these problems. In this paper, we review the existing literature on uncertainty in cutting and packing problems, propose a classification framework, and highlight the many research gaps and opportunities for scientific contributions.

2022

The rectangular two-dimensional strip packing problem real-life practical constraints: A bibliometric overview

Authors
Neuenfeldt, A; Silva, E; Francescatto, M; Rosa, CB; Siluk, J;

Publication
COMPUTERS & OPERATIONS RESEARCH

Abstract
Over the years, methods and algorithms have been extensively studied to solve variations of the rectangular twodimensional strip packing problem (2D-SPP), in which small rectangles must be packed inside a larger object denominated as a strip, while minimizing the space necessary to pack all rectangles. In the rectangular 2D-SPP, constraints are used to restrict the packing process, satisfying physical and real-life practical conditions that can impact the material cutting. The objective of this paper is to present an extensive literature review covering scientific publications about the rectangular 2D-SPP constraints in order to provide a useful foundation to support new research works. A systematic literature review was conducted, and 223 articles were selected and analyzed. Real-life practical constraints concerning the rectangular 2D-SPP were classified into seven different groups. In addition, a bibliometric analysis of the rectangular 2D-SPP academic literature was developed. The most relevant authors, articles, and journals were discussed, and an analysis made concerning the basic constraints (orientation and guillotine cutting) and the main solving methods for the rectangular 2D-SPP. Overall, the present paper indicates opportunities to address real-life practical constraints.

2019

RESOURCES FOR TWO-DIMENSIONAL (AND THREE-DIMENSIONAL) CUTTING AND PACKING SOLUTION METHODS RESEARCH

Authors
Oliveira, Ó; Gamboa, D; Silva, E;

Publication
Proceedings of the 16th International Conference on Applied Computing 2019

Abstract

2023

An introduction to the two-dimensional rectangular cutting and packing problem

Authors
Oliveira, O; Gamboa, D; Silva, E;

Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract
Cutting and packing problems have been widely studied in the last decades, mainly due to the variety of industrial applications where the problems emerge. This paper presents an overview of the solution approaches that have been proposed for solving two-dimensional rectangular cutting and packing problems. The main emphasis of this work is on two distinct problems that belong to the cutting and packing problem family. The first problem aims to place onto an object the maximum-profit subset of items, that is, output maximization, while the second one aims to place all the items using as few identical objects as possible, that is, input minimization. The objective of this paper is not to be exhaustive but to provide a solid grasp on two-dimensional rectangular cutting and packing problems by describing their most important solution approaches.

2023

The integrated lot-sizing and cutting stock problem under demand uncertainty

Authors
Curcio, E; de Lima, VL; Miyazawa, FK; Silva, E; Amorim, P;

Publication
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH

Abstract
Interest in integrating lot-sizing and cutting stock problems has been increasing over the years. This integrated problem has been applied in many industries, such as paper, textile and furniture. Yet, there are only a few studies that acknowledge the importance of uncertainty to optimise these integrated decisions. This work aims to address this gap by incorporating demand uncertainty through stochastic programming and robust optimisation approaches. Both robust and stochastic models were specifically conceived to be solved by a column generation method. In addition, both models are embedded in a rolling-horizon procedure in order to incorporate dynamic reaction to demand realisation and adapt the models to a multistage stochastic setting. Computational experiments are proposed to test the efficiency of the column generation method and include a Monte Carlo simulation to assess both stochastic programming and robust optimisation for the integrated problem. Results suggest that acknowledging uncertainty can cut costs by up to 39.7%, while maintaining or reducing variability at the same time.

  • 6
  • 7