Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Filipe Neves Santos

2022

ATOM: A general calibration framework for multi-modal, multi-sensor systems

Authors
Oliveira, M; Pedrosa, E; de Aguiar, AP; Rato, DFPD; dos Santos, FN; Dias, P; Santos, V;

Publication
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
The fusion of data from different sensors often requires that an accurate geometric transformation between the sensors is known. The procedure by which these transformations are estimated is known as sensor calibration. The vast majority of calibration approaches focus on specific pairwise combinations of sensor modalities, unsuitable to calibrate robotic systems containing multiple sensors of varied modalities. This paper presents a novel calibration methodology which is applicable to multi-sensor, multi-modal robotic systems. The approach formulates the calibration as an extended optimization problem, in which the poses of the calibration patterns are also estimated. It makes use of a topological representation of the coordinate frames in the system, in order to recalculate the poses of the sensors throughout the optimization. Sensor poses are retrieved from the combination of geometric transformations which are atomic, in the sense that they are indivisible. As such, we refer to this approach as ATOM - Atomic Transformations Optimization Method. This makes the approach applicable to different calibration problems, such as sensor to sensor, sensor in motion, or sensor to coordinate frame. Additionally, the proposed approach provides advanced functionalities, integrated into ROS, designed to support the several stages of a complete calibration procedure. Results covering several robotic platforms and a large spectrum of calibration problems show that the methodology is in fact general, and achieves calibrations which are as accurate as the ones provided by state of the art methods designed to operate only for specific combinations of pairwise modalities.

2022

Kiwi Plant Canker Diagnosis Using Hyperspectral Signal Processing and Machine Learning: Detecting Symptoms Caused by Pseudomonas syringae pv. actinidiae

Authors
Reis Pereira, M; Tosin, R; Martins, R; dos Santos, FN; Tavares, F; Cunha, M;

Publication
PLANTS-BASEL

Abstract
Pseudomonas syringae pv. actinidiae (Psa) has been responsible for numerous epidemics of bacterial canker of kiwi (BCK), resulting in high losses in kiwi production worldwide. Current diagnostic approaches for this disease usually depend on visible signs of the infection (disease symptoms) to be present. Since these symptoms frequently manifest themselves in the middle to late stages of the infection process, the effectiveness of phytosanitary measures can be compromised. Hyperspectral spectroscopy has the potential to be an effective, non-invasive, rapid, cost-effective, high-throughput approach for improving BCK diagnostics. This study aimed to investigate the potential of hyperspectral UV-VIS reflectance for in-situ, non-destructive discrimination of bacterial canker on kiwi leaves. Spectral reflectance (325-1075 nm) of twenty plants were obtained with a handheld spectroradiometer in two commercial kiwi orchards located in Portugal, for 15 weeks, totaling 504 spectral measurements. Several modeling approaches based on continuous hyperspectral data or specific wavelengths, chosen by different feature selection algorithms, were tested to discriminate BCK on leaves. Spectral separability of asymptomatic and symptomatic leaves was observed in all multi-variate and machine learning models, including the FDA, GLM, PLS, and SVM methods. The combination of a stepwise forward variable selection approach using a support vector machine algorithm with a radial kernel and class weights was selected as the final model. Its overall accuracy was 85%, with a 0.70 kappa score and 0.84 F-measure. These results were coherent with leaves classified as asymptomatic or symptomatic by visual inspection. Overall, the findings herein reported support the implementation of spectral point measurements acquired in situ for crop disease diagnosis.

2022

Point-of-Care Using Vis-NIR Spectroscopy for White Blood Cell Count Analysis

Authors
Barroso, TG; Ribeiro, L; Gregorio, H; Monteiro Silva, F; dos Santos, FN; Martins, RC;

Publication
CHEMOSENSORS

Abstract
Total white blood cells count is an important diagnostic parameter in both human and veterinary medicines. State-of-the-art is performed by flow cytometry combined with light scattering or impedance measurements. Spectroscopy point-of-care has the advantages of miniaturization, low sampling, and real-time hemogram analysis. While white blood cells are in low proportions, while red blood cells and bilirubin dominate spectral information, complicating detection in blood. We performed a feasibility study for the direct detection of white blood cells counts in canine blood by visible-near infrared spectroscopy for veterinary applications, benchmarking current chemometrics techniques (similarity, global and local partial least squares, artificial neural networks and least-squares support vector machines) with self-learning artificial intelligence, introducing data augmentation to overcome the hurdle of knowledge representativity. White blood cells count information is present in the recorded spectra, allowing significant discrimination and equivalence between hemogram and spectra principal component scores. Chemometrics methods correlate white blood cells count to spectral features but with lower accuracy. Self-Learning Artificial Intelligence has the highest correlation (0.8478) and a small standard error of 6.92 x 10(9) cells/L, corresponding to a mean absolute percentage error of 25.37%. Such allows the accurate diagnosis of white blood cells in the range of values of the reference interval (5.6 to 17.8 x 10(9) cells/L) and above. This research is an important step toward the existence of a miniaturized spectral point-of-care hemogram analyzer.

2022

Edge AI-Based Tree Trunk Detection for Forestry Monitoring Robotics

Authors
da Silva, DQ; dos Santos, FN; Filipe, V; Sousa, AJ; Oliveira, PM;

Publication
ROBOTICS

Abstract
Object identification, such as tree trunk detection, is fundamental for forest robotics. Intelligent vision systems are of paramount importance in order to improve robotic perception, thus enhancing the autonomy of forest robots. To that purpose, this paper presents three contributions: an open dataset of 5325 annotated forest images; a tree trunk detection Edge AI benchmark between 13 deep learning models evaluated on four edge-devices (CPU, TPU, GPU and VPU); and a tree trunk mapping experiment using an OAK-D as a sensing device. The results showed that YOLOR was the most reliable trunk detector, achieving a maximum F1 score around 90% while maintaining high scores for different confidence levels; in terms of inference time, YOLOv4 Tiny was the fastest model, attaining 1.93 ms on the GPU. YOLOv7 Tiny presented the best trade-off between detection accuracy and speed, with average inference times under 4 ms on the GPU considering different input resolutions and at the same time achieving an F1 score similar to YOLOR. This work will enable the development of advanced artificial vision systems for robotics in forestry monitoring operations.

2025

Indoor Benchmark of 3-D LiDAR SLAM at Iilab-Industry and Innovation Laboratory

Authors
Ribeiro, JD; Sousa, RB; Martins, JG; Aguiar, AS; Santos, FN; Sobreira, HM;

Publication
IEEE ACCESS

Abstract
This paper presents an indoor benchmarking study of state-of-the-art 3D LiDAR-based Simultaneous Localization and Mapping (SLAM) algorithms using the newly developed IILABS 3D - iilab Indoor LiDAR-based SLAM 3D dataset. Existing SLAM datasets often focus on outdoor environments, rely on a single type of LiDAR sensor, or lack additional sensor data such as wheel odometry in ground-based robotic platforms. Consequently, the existing datasets lack data diversity required to comprehensively evaluate performance under diverse indoor conditions. The IILABS 3D dataset fills this gap by providing a sensor-rich, indoor-exclusive dataset recorded in a controlled laboratory environment using a wheeled mobile robot platform. It includes four heterogeneous 3D LiDAR sensors - Velodyne VLP-16, Ouster OS1-64, RoboSense RS-Helios-5515, and Livox Mid-360 - featuring both mechanical spinning and non-repetitive scanning patterns, as well as an IMU and wheel odometry for sensor fusion. The dataset also contains calibration sequences, challenging benchmark trajectories, and high-precision ground-truth poses captured with a motion capture system. Using this dataset, we benchmark nine representative LiDAR-based SLAM algorithms across multiple sequences, analyzing their performance in terms of accuracy and consistency under varying sensor configurations. The results provide a comprehensive performance comparison and valuable insights into the strengths and limitations of current SLAM algorithms in indoor environments. The dataset, benchmark results, and related tools are publicly available at https://jorgedfr.github.io/3d_lidar_slam_benchmark_at_iilab/

2026

Economic benchmarking of assisted pollination methods for kiwifruit flowers: Assessment of cost-effectiveness of robotic solution

Authors
Pinheiro, I; Moura, P; Rodrigues, L; Pacheco, AP; Teixeira, JG; Valente, LG; Cunha, M; Neves Dos Santos, FN;

Publication
Agricultural Systems

Abstract
In 2023, global kiwifruit production reached over 4.4 million tonnes, highlighting the crop's significant economic importance. However, achieving high yields depends on adequate pollination. In Actinidia species, pollen is transferred by insects from male to female flowers on separate plants. Natural pollination faces increasing challenges due to the decline in pollinator populations and climate variability, driving the adoption of assisted pollination methods. This study examines the Portuguese kiwifruit sector, one of the world's top 12 producers, using a novel mixed-methods approach that integrates both qualitative and quantitative analyses to assess the feasibility of robotic pollination. The qualitative study identifies the benefits and challenges of current methods and explores how robotic pollination could address these challenges. The quantitative analysis explores the cost-effectiveness and practicality of implementing robotic pollination as a product and service. Findings indicate that most farmers use handheld pollination devices but face pollen wastage and application timing challenges. Economic analysis establishes a break-even point of €685 per hectare for an annual single application, with a first robotic pollination of €17 146 becoming cost-effective for orchards of at least 3.5 hectares and a second robotic solution of €34 293 becoming cost-effective for orchards up to 7 hectares. A robotic pollination service priced at €685 per hectare per application presents a low-risk and a viable alternative for growers. This study provides robust economic insights supporting the adoption of robotic pollination technologies. This study is crucial to make informed decisions to enhance kiwifruit production's productivity and sustainability through precise robotic-assisted pollination. © 2025 Elsevier B.V., All rights reserved.

  • 14
  • 24