2023
Authors
Mendes, TC; Barata, AA; Pereira, M; Moreira, JM; Camacho, R; Sousa, RT;
Publication
Intelligent Data Engineering and Automated Learning - IDEAL 2023 - 24th International Conference, Évora, Portugal, November 22-24, 2023, Proceedings
Abstract
Keeping high service levels of a fast-growing number of servers is crucial and challenging for IT operations teams. Online monitoring systems trigger many occurrences that experts find hard to keep up with. In addition, most of the triggered warnings do not correspond to real, critical problems, making it difficult for technicians to know which to focus on and address in a timely manner. Outlier and concept drift detection techniques can be applied to multiple streams of readings related to server monitoring metrics, but they also generate many False Positives. Ranking algorithms can already prioritize relevant results in information retrieval and recommender systems. However, these approaches are supervised, making them inapplicable in event detection on data streams. We propose a framework that combines event aggregations and uses a customized clustering algorithm to score and rank alarms in the context of IT operations. To the best of our knowledge, this is the first unsupervised, online, high-dimensional approach to rank IT ops events and contributes to advancing knowledge about associated key concepts and challenges of this problem. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
2023
Authors
Gonçalves, CA; Vieira, AS; Gonçalves, CT; Borrajo, L; Camacho, R; Iglesias, EL;
Publication
Hybrid Artificial Intelligent Systems - 18th International Conference, HAIS 2023, Salamanca, Spain, September 5-7, 2023, Proceedings
Abstract
The rapid growth of the scientific literature makes text classification essential specially in the biomedical research domain to help researchers to focus on the latest findings in a fast and efficient way. The potential benefits of using text semantic enrichment to enhance the biomedical document classification is presented in this study. We show the importance of enriching the corpora with semantic information to improve the full-text classification. The approach involves the semantic enrichment of a Medline corpus with a Semantic Repository (SemRep) which extracts semantic predications from biomedical text. The study also addresses the problem of treating highly dimensional data while maintaining the semantic structure of the corpus. Experimental results lead to the sustained conclusion that better results are achieved with full-text instead of using only abstracts and titles. We also conclude that the application of enriched techniques to full-texts significantly improves the task of text classification providing a significant contribution for the biomedical text mining research. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2015
Authors
Teixeira, D; Cruz, A; Bráz, S; Moreira, A; Relvas, J; Camacho, R;
Publication
Proceedings of the 30th Annual ACM Symposium on Applied Computing
Abstract
2023
Authors
Freitas, H; Camacho, R; Silva, DC;
Publication
Computational Science - ICCS 2023 - 23rd International Conference, Prague, Czech Republic, July 3-5, 2023, Proceedings, Part I
Abstract
2023
Authors
Mendes, D; Camacho, R;
Publication
BIOINFORMATICS AND BIOMEDICAL ENGINEERING, IWBBIO 2023, PT I
Abstract
This article reports on the development of a Web platform for the study of Adverse Drug Events (ADEs). The platform is able to import ADE episodes from official Web sites, like OpenFDA, analyse the chemistry of the drugs involved, together with patient data, and produce a potential explanation based on the drugs interactions. Each study uses chemical knowledge to enrich the information on the molecules involved in the episodes. Data Mining is then used to construct models that can help in the explanation of the ADE occurrence and to predict future events. This paper reports on the Web portal developed and the Data Mining experiments conducted to evaluate the quality, and potential explanations of the forecasted adverse reactions, using real reports of drug administration and the subsequent adverse events. The results showed that it was possible to predict the outcomes of ADEs based on the structure of the molecules of the drugs involved and the data collected from real reports of drug administration up to an accuracy of 79%, while also predicting, with high accuracy, the severity of events where the outcome is the death of the patient (with a precision of 98.9%). The platform provides a less expensive and more accurate way of predicting adverse drug reactions compared to traditional methods. This study highlights the importance of understanding drug interactions at a molecular level and the usefulness of utilising Data Mining techniques in predicting ADEs.
2004
Authors
Camacho, R; King, RD; Srinivasan, A;
Publication
ILP
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.