Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Eduardo Silva

2022

Hyperspectral Imaging Zero-Shot Learning for Remote Marine Litter Detection and Classification

Authors
Freitas, S; Silva, H; Silva, E;

Publication
REMOTE SENSING

Abstract
This paper addresses the development of a novel zero-shot learning method for remote marine litter hyperspectral imaging data classification. The work consisted of using an airborne acquired marine litter hyperspectral imaging dataset that contains data about different plastic targets and other materials and assessing the viability of detecting and classifying plastic materials without knowing their exact spectral response in an unsupervised manner. The classification of the marine litter samples was divided into known and unknown classes, i.e., classes that were hidden from the dataset during the training phase. The obtained results show a marine litter automated detection for all the classes, including (in the worst case of an unknown class) a precision rate over 56% and an overall accuracy of 98.71%.

2022

A SMACC based mission control system for autonomous underwater vehicles

Authors
Carvalho, D; Martins, A; Almeida, JM; Silva, E;

Publication
2022 OCEANS HAMPTON ROADS

Abstract
Scientific and environmental focused deep sea exploration is being expanded and as such a new class of Autonomous Underwater Vehicle (AUV) capable of accessing deep underwater sea bed environment for long periods of time is being deployed. This type of vehicle and the mission environment poses challenges to the mission development as these operations contain many systems that must work together to ensure that the mission requirements are met and that the vehicle is operated safely. As such, a solution based on the SMACC library for Robotic Operating System (ROS) was proposed and tested using a simulator. The results shown were based on the simulation of three missions representative of different scenarios for a deep sea exploration AUV and they were evaluated on the completion of the mission plan.

2022

Unmanned Aerial Vehicle for Wind-Turbine Inspection. Next Step: Offshore

Authors
Dias, A; Almeida, J; Oliveira, A; Santos, T; Martins, A; Silva, E;

Publication
2022 OCEANS HAMPTON ROADS

Abstract
Offshore wind turbine application has been widespread in the last years, with an estimation that in 2030 will reach a total capacity of 234GW. Offshore wind farms introduce advantages in terms of environmental impact (noise, impact on birds, disrupted landscapes) and energy production (34% onshore and 43% offshore). Still, they also introduce scientific challenges in developing methodologies that allow wind farm inspection (preventive maintenance) safety for humans. This paper presents a UAV approach for autonomous inspection of inland windturbine and describes the field tests in Penela, Portugal. From the state-of-the-art available wind turbine inspection, in 2015, we carried out the first autonomous inspection with a UAV. The inspection of wind blades offshore is an ongoing project; therefore, the paper also presents the preliminary results with a simulation environment to validate the 3D LiDAR and the inspection procedure with new challenges effects: floating platform, wind gusts, and unknown initial blade position.

2025

Data fusion approach for unmodified UAV tracking with vision and mmWave Radar

Authors
Amaral, G; Martins, JJ; Martins, P; Dias, A; Almeida, J; Silva, E;

Publication
2025 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS, ICUAS

Abstract
The knowledge of the precise 3D position of a target in tracking applications is a fundamental requirement. The lack of a low-cost single sensor capable of providing the three-dimensional position (of a target) makes it necessary to use complementary sensors together. This research presents a Local Positioning System (LPS) for outdoor scenarios, based on a data fusion approach for unmodified UAV tracking, combining a vision sensor and mmWave radar. The proposed solution takes advantage of the radar's depth observation ability and the potential of a neural network for image processing. We have evaluated five data association approaches for radar data cluttered to get a reliable set of radar observations. The results demonstrated that the estimated target position is close to an exogenous ground truth obtained from a Visual Inertial Odometry (VIO) algorithm executed onboard the target UAV. Moreover, the developed system's architecture is prepared to be scalable, allowing the addition of other observation stations. It will increase the accuracy of the estimation and extend the actuation area. To the best of our knowledge, this is the first work that uses a mmWave radar combined with a camera and a machine learning algorithm to track a UAV in an outdoor scenario.

2025

Real-Time Registration of 3D Underwater Sonar Scans

Authors
Ferreira, A; Almeida, J; Matos, A; Silva, E;

Publication
ROBOTICS

Abstract
Due to space and energy restrictions, lightweight autonomous underwater vehicles (AUVs) are usually fitted with low-power processing units, which limits the ability to run demanding applications in real time during the mission. However, several robotic perception tasks reveal a parallel nature, where the same processing routine is applied for multiple independent inputs. In such cases, leveraging parallel execution by offloading tasks to a GPU can greatly enhance processing speed. This article presents a collection of generic matrix manipulation kernels, which can be combined to develop parallelized perception applications. Taking advantage of those building blocks, we report a parallel implementation for the 3DupIC algorithm-a probabilistic scan matching method for sonar scan registration. Tests demonstrate the algorithm's real-time performance, enabling 3D sonar scan matching to be executed in real time onboard the EVA AUV.

2025

Evaluation of Deep Learning Models for Polymetallic Nodule Detection and Segmentation in Seafloor Imagery

Authors
Loureiro, G; Dias, A; Almeida, J; Martins, A; Silva, E;

Publication
JOURNAL OF MARINE SCIENCE AND ENGINEERING

Abstract
Climate change has led to the need to transition to clean technologies, which depend on an number of critical metals. These metals, such as nickel, lithium, and manganese, are essential for developing batteries. However, the scarcity of these elements and the risks of disruptions to their supply chain have increased interest in exploiting resources on the deep seabed, particularly polymetallic nodules. As the identification of these nodules must be efficient to minimize disturbance to the marine ecosystem, deep learning techniques have emerged as a potential solution. Traditional deep learning methods are based on the use of convolutional layers to extract features, while recent architectures, such as transformer-based architectures, use self-attention mechanisms to obtain global context. This paper evaluates the performance of representative models from both categories across three tasks: detection, object segmentation, and semantic segmentation. The initial results suggest that transformer-based methods perform better in most evaluation metrics, but at the cost of higher computational resources. Furthermore, recent versions of You Only Look Once (YOLO) have obtained competitive results in terms of mean average precision.

  • 16
  • 25