2025
Authors
Grazi, L; Alonso, AF; Gasiorek, A; Llopis, AMP; Grajeda, A; Kanakis, A; Vidal, AR; Parri, A; Vidal, F; Ergas, I; Zeljkovic, I; Durá, JP; Mein, JP; Katsampiris-Salgado, K; Rocha, LF; Rodriguez, LN; Petry, MR; Neufeld, M; Dimitropoulos, N; Köster, N; Mimica, R; Fernandes, SV; Crea, S; Makris, S; Giartzas, S; Settler, V; Masood, J;
Publication
ELECTRONICS
Abstract
Small to medium-sized shipyards play a crucial role in the European naval industry. However, the globalization of technology has increased competition, posing significant challenges to shipyards, particularly in domestic markets for short sea, work, and inland vessels. Many shipyard operations still rely on manual, labor-intensive tasks performed by highly skilled operators. In response, the adoption of new tools is essential to enhance efficiency and competitiveness. This paper presents a methodology for developing a human-centric portfolio of advanced technologies tailored for shipyard environments, covering processes such as shipbuilding, retrofitting, outfitting, and maintenance. The proposed technological solutions, which have achieved high technology readiness levels, include 3D modeling and digitalization, robotics, augmented and virtual reality, and occupational exoskeletons. Key findings from real-scale demonstrations are discussed, along with major development and implementation challenges. Finally, best practices and recommendations are provided to support both technology developers seeking fully tested tools and end users aiming for seamless adoption.
2025
Authors
Nascimento, R; Ferreira, T; Rocha, CD; Filipe, V; Silva, MF; Veiga, G; Rocha, L;
Publication
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
Abstract
Quality inspection inspection systems are critical for maintaining product integrity. Being a repetitive task, when performed by operators only, it can be slow and error-prone. This paper introduces an automated inspection system for quality assessment in casting aluminum parts resorting to a robotic system. The method comprises two processes: filing detection and hole inspection. For filing detection, five deep learning modes were trained. These models include an object detector and four instance segmentation models: YOLOv8, YOLOv8n-seg, YOLOv8s-seg, YOLOv8m-seg, and Mask R-CNN, respectively. Among these, YOLOv8s-seg exhibited the best overall performance, achieving a recall rate of 98.10%, critical for minimizing false negatives and yielding the best overall results. Alongside, the system inspects holes, utilizing image processing techniques like template-matching and blob detection, achieving a 97.30% accuracy and a 2.67% Percentage of Wrong Classifications. The system improves inspection precision and efficiency while supporting sustainability and ergonomic standards, reducing material waste and reducing operator fatigue.
2025
Authors
Nascimento, R; Rocha, CD; Gonzalez, DG; Silva, T; Moreira, R; Silva, MF; Filipe, V; Rocha, LF;
Publication
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
Abstract
The growing demand for high-quality components in various industries, particularly in the automotive sector, requires advanced and reliable inspection methods to maintain competitive standards and support innovation. Manual quality inspection tasks are often inefficient and prone to errors due to their repetitive nature and subjectivity, which can lead to attention lapses and operator fatigue. The inspection of reflective aluminum parts presents additional challenges, as uncontrolled reflections and glare can obscure defects and reduce the reliability of conventional vision-based methods. Addressing these challenges requires optimized illumination strategies and robust image processing techniques to enhance defect visibility. This work presents the development of an automated optical inspection system for reflective parts, focusing on components made of high-pressure diecast aluminum used in the automotive industry. The reflective nature of these parts introduces challenges for defect detection, requiring optimized illumination and imaging methods. The system applies deep learning algorithms and uses dome light to achieve uniform illumination, enabling the detection of small defects on reflective surfaces. A collaborative robotic manipulator equipped with a gripper handles the parts during inspection, ensuring precise positioning and repeatability, which improves both the efficiency and effectiveness of the inspection process. A flow execution-based software platform integrates all system components, enabling seamless operation. The system was evaluated with Schmidt Light Metal Group using three custom datasets to detect surface porosities and inner wall defects post-machining. For surface porosity detection, YOLOv8-Mosaic, trained with cropped images to reduce background noise, achieved a recall value of 84.71% and was selected for implementation. Additionally, an endoscopic camera was used in a preliminary study to detect defects within the inner walls of holes. The industrial trials produced promising results, demonstrating the feasibility of implementing a vision-based automated inspection system in various industries. The system improves inspection accuracy and efficiency while reducing material waste and operator fatigue.
2024
Authors
Dias, PA; Petry, MR; Rocha, LF;
Publication
2024 20TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS, MESA 2024
Abstract
Emerging from a rich heritage, the shoe manufacturing industry stands as one of the world's most enduring and tradition-bound sectors. While renowned for their high-quality craftsmanship, countries like Portugal and Italy share the spotlight with those who focus on mass production methods. Regardless of their manufacturing model, both must adapt to the evolving competitive landscape by embracing innovative manufacturing techniques. Robotics has emerged as a transformative force within the shoe industry, offering a path towards enhanced working conditions for employees while simultaneously reducing reliance on manual labor and bolstering productivity. The main focus of this paper is the comprehensive literature review, which examines the advancements made by researchers in various stages of shoe production, including roughing, gluing, finishing, and lasting. This article sheds light on the industry's response to modernization and efficiency imperatives, providing a thorough understanding of robotics in shoe manufacturing automation. A case study on the real implementation and simulation of a robotic cell for sole roughing is also presented. The results revealed that the robotic cell maintains the production cadence.
2024
Authors
Pinto, A; Duarte, I; Carvalho, C; Rocha, L; Santos, J;
Publication
HUMAN BEHAVIOR AND EMERGING TECHNOLOGIES
Abstract
The use of collaborative robots in industries is growing rapidly. To ensure the successful implementation of these devices, it is essential to consider the user experience (UX) during their design process. This study is aimed at testing the UX goals that emerge when users interact with a collaborative robot during the programming and collaborating phases. A framework on UX goals will be tested, in the geographical context of Portugal. For that, an experimental setup was introduced in the form of a laboratory case study in which the human-robot collaboration (HRC) was evaluated by the combination of both quantitative (applying the User Experience Questionnaire [UEQ]) and qualitative (semistructured interviews) metrics. The sample was constituted by 19 university students. The quantitative approach showed positive overall ratings for the programming phase UX, with attractiveness having the highest average value (M=2.21; SD=0.59) and dependability the lowest (M=1.64; SD=0.65). For the collaboration phase, all UX ratings were positive, with attractiveness having the highest average value (M=2.46; SD=0.78) and efficiency the lowest (M=1.93; SD=0.77). Only perspicuity showed significant differences between the two phases (t18=-4.335, p=0.002). The qualitative approach, at the light of the framework used, showed that efficiency, inspiration, and usability are the most mentioned UX goals emerging from the content analysis. These findings enhance manufacturing workers' well-being by improving cobot design in organizations.
2024
Authors
Ventuzelos, V; Petry, MR; Rocha, LF;
Publication
2024 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
The footwear industry is known for its longstanding traditional production methods that require intense manual labor. Roughing, for example, is regarded as one of the significant and critical operations in shoe manufacturing and consists of using abrasive tools to remove a thin layer of the shoe's surface, creating a slightly roughened texture that provides a better surface area for adhesion. As such, workers are typically subjected to hazardous substances (i.e., dust, chromium), repetitive strain injuries, and ergonomic challenges. Although robots can automate repetitive tasks and perform with high precision and consistency, the footwear industry is usually reluctant to employ industrial robots due to the need for restructuring. This paper addresses the challenge of re-designing the lateral roughing of uppers to allow robot-assisted manufacturing with minimal modifications in the manufacturing process. The proposed innovative system employs a robotic manipulator to perform roughing based on data collected from preceding manufacturing steps. Workers marking the mesh line of each sole-upper pair can simultaneously teach the manipulator path for that same pair, using a programming-by-demonstration approach. Multiple paths were collected by outlining a piece of footwear, converted into robot instructions, and deployed on a simulated and real industrial manipulator. The key findings of this research showcase the capability of the proposed solution to replicate collected paths accurately, indicating potential applications not only in roughing processes but also in similar tasks like primer and adhesive application.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.