Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by António Paulo Moreira

2023

Special Issue on Advances in Industrial Robotics and Intelligent Systems

Authors
Moreira, AP; Neto, P; Vidal, F;

Publication
APPLIED SCIENCES-BASEL

Abstract
Robotics and intelligent systems are key technologies to promote efficient and innovative applications in the most diverse domains (industry, healthcare, agriculture, construction, mobility, etc [...]

2016

Robot 2015: Second Iberian Robotics Conference - Advances in Robotics, Lisbon, Portugal, 19-21 November 2015, Volume 1

Authors
Reis, LP; Moreira, AP; Lima, PU; Montano, L; Muñoz Martínez, VF;

Publication
ROBOT (1)

Abstract

2022

Omnidirectional robot modeling and simulation

Authors
Magalhães, SC; Moreira, AP; Costa, P;

Publication
CoRR

Abstract

2023

Benchmarking edge computing devices for grape bunches and trunks detection using accelerated object detection single shot multibox deep learning models

Authors
Magalhaes, SC; dos Santos, FN; Machado, P; Moreira, AP; Dias, J;

Publication
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE

Abstract
Purpose: Visual perception enables robots to perceive the environment. Visual data is processed using computer vision algorithms that are usually time-expensive and require powerful devices to process the visual data in real-time, which is unfeasible for open-field robots with limited energy. This work benchmarks the performance of different heterogeneous platforms for object detection in real-time. This research benchmarks three architectures: embedded GPU-Graphical Processing Units (such as NVIDIA Jetson Nano 2 GB and 4 GB, and NVIDIA Jetson TX2), TPU-Tensor Processing Unit (such as Coral Dev Board TPU), and DPU-Deep Learning Processor Unit (such as in AMD-Xilinx ZCU104 Development Board, and AMD-Xilinx Kria KV260 Starter Kit). Methods: The authors used the RetinaNet ResNet-50 fine-tuned using the natural VineSet dataset. After the trained model was converted and compiled for target-specific hardware formats to improve the execution efficiency.Conclusions and Results: The platforms were assessed in terms of performance of the evaluation metrics and efficiency (time of inference). Graphical Processing Units (GPUs) were the slowest devices, running at 3 FPS to 5 FPS, and Field Programmable Gate Arrays (FPGAs) were the fastest devices, running at 14 FPS to 25 FPS. The efficiency of the Tensor Processing Unit (TPU) is irrelevant and similar to NVIDIA Jetson TX2. TPU and GPU are the most power-efficient, consuming about 5 W. The performance differences, in the evaluation metrics, across devices are irrelevant and have an F1 of about 70 % and mean Average Precision (mAP) of about 60 %.

  • 45
  • 45