Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Nuno Cruz

2019

Performance evaluation of a PVDF hydrophone for deep sea applications

Authors
Martins, MS; Faria, CL; Matos, T; Goncalves, LM; Silva, A; Jesus, SM; Cruz, N;

Publication
OCEANS 2019 - Marseille, OCEANS Marseille 2019

Abstract
The lack of penetration of light and electromagnetic radiation beyond a few meters in the ocean makes acoustics the technique of choice for data transmission, target detection and ocean sensing in general. Acoustic transducers are typically based on piezoelectric materials due to the good response at high frequencies. Depending on the application it can be built using ceramics, polymers and composite materials. In the hydrostatic mode PZT ceramics hydrophones have low performance due to the low hydrostatic piezoelectric stress value. On the other hand, PVDF have shown relatively high hydrostatic mode response. This work presents the development of a PVDF hydrophone for deep sea applications. The hydrophone was subjected to a pressure test up to 25 MPa to evaluate the response variation under high hydrostatic pressure. The results show an increase up to 6 dB sensitivity under 15 MPa pressure.

2023

Model Identification and Control of a Buoyancy Change Device

Authors
Carneiro, JF; Pinto, JB; de Almeida, FG; Cruz, NA;

Publication
ACTUATORS

Abstract
There are several compelling reasons for exploring the ocean, for instance, the potential for accessing valuable resources, such as energy and minerals; establishing sovereignty; and addressing environmental issues. As a result, the scientific community has increasingly focused on the use of autonomous underwater vehicles (AUVs) for ocean exploration. Recent research has demonstrated that buoyancy change modules can greatly enhance the energy efficiency of these vehicles. However, the literature is scarce regarding the dynamic models of the vertical motion of buoyancy change modules. It is therefore difficult to develop adequate depth controllers, as this is a very complex task to perform in situ. The focus of this paper is to develop simplified linear models for a buoyancy change module that was previously designed by the authors. These models are experimentally identified and used to fine-tune depth controllers. Experimental results demonstrate that the controllers perform well, achieving a virtual zero steady-state error with satisfactory dynamic characteristics.

2023

Estimation of Sediments in Underwater Wall Corners using a Mechanical Scanning Sonar

Authors
Goncalves, CF; Cruz, NA; Ferreira, BM;

Publication
2023 IEEE UNDERWATER TECHNOLOGY, UT

Abstract
This paper describes a robotic system to detect and estimate the volume of sediments in underwater wall corners, in scenarios with zero visibility. All detection and positioning is based on data from a scanning sonar. The main idea is to scan the walls and the bottom of the structure to detect the corner, and then use data obtained in the direction of the corner to estimate the presence of sediment accumulation and its volume. Our approach implements an image segmentation to extract range from the surfaces of interest. The resulting data is then employed for relative localization and estimate of the sediment accumulation. The paper provides information about the methodologies developed and data from practical experiments.

  • 23
  • 23