2025
Authors
Rajaoarisoa, L; Randrianandraina, R; Nalepa, GJ; Gama, J;
Publication
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
Abstract
To maintain the performance of the latest generation of onshore and offshore wind turbine systems, a new methodology must be proposed to enhance the maintenance policy. In this context, this paper introduces an approach to designing a decision support tool that combines predictive capabilities with anomaly explanations for effective IoT predictive maintenance tasks. Essentially, the paper proposes an approach that integrates a predictive maintenance model with an explicative decision-making system. The key challenge is to detect anomalies and provide plausible explanations, enabling human operators to determine the necessary actions swiftly. To achieve this, the proposed approach identifies a minimal set of relevant features required to generate rules that explain the root causes of issues in the physical system. It estimates that certain features, such as the active power generator, blade pitch angle, and the average water temperature of the voltage circuit protection in the generator's sub-components, are particularly critical to monitor. Additionally, the approach simplifies the computation of an efficient predictive maintenance model. Compared to other deep learning models, the identified model provides up to 80% accuracy in anomaly detection and up to 96% for predicting the remaining useful life of the system under study. These performance metrics and indicators values are essential for enhancing the decision-making process. Moreover, the proposed decision support tool elucidates the onset of degradation and its dynamic evolution based on expert knowledge and data gathered through Internet of Things (IoT) technology and inspection reports. Thus, the developed approach should aid maintenance managers in making accurate decisions regarding inspection, replacement, and repair tasks. The methodology is demonstrated using a wind farm dataset provided by Energias De Portugal.
2024
Authors
Caroprese, L; Pisani, F; Veloso, BM; Konig, M; Manco, G; Hoos, H; Gama, J;
Publication
ACM Transactions on Recommender Systems
Abstract
2025
Authors
Zhang, CS; Almpanidis, G; Fan, GJ; Deng, BQ; Zhang, YB; Liu, J; Kamel, A; Soda, P; Gama, J;
Publication
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
Abstract
Long-tailed data are a special type of multiclass imbalanced data with a very large amount of minority/tail classes that have a very significant combined influence. Long-tailed learning (LTL) aims to build high-performance models on datasets with long-tailed distributions that can identify all the classes with high accuracy, in particular the minority/tail classes. It is a cutting-edge research direction that has attracted a remarkable amount of research effort in the past few years. In this article, we present a comprehensive survey of the latest advances in long-tailed visual learning. We first propose a new taxonomy for LTL, which consists of eight different dimensions, including data balancing, neural architecture, feature enrichment, logits adjustment, loss function, bells and whistles, network optimization, and posthoc processing techniques. Based on our proposed taxonomy, we present a systematic review of LTL methods, discussing their commonalities and alignable differences. We also analyze the differences between imbalance learning and LTL. Finally, we discuss prospects and future directions in this field.
2024
Authors
Bécue, A; Gama, J; Brito, PQ;
Publication
ARTIFICIAL INTELLIGENCE REVIEW
Abstract
The classic literature about innovation conveys innovation strategy the leading and starting role to generate business growth due to technology development and more effective managerial practices. The advent of Artificial Intelligence (AI) however reverts this paradigm in the context of Industry 5.0. The focus is moving from how innovation fosters AI to how AI fosters innovation. Therefore, our research question can be stated as follows: What factors influence the effect of AI on Innovation Capacity in the context of Industry 5.0? To address this question we conduct a scoping review of a vast body of literature spanning engineering, human sciences, and management science. We conduct a keyword-based literature search completed by bibliographic analysis, then classify the resulting 333 works into 3 classes and 15 clusters which we critically analyze. We extract 3 hypotheses setting associations between 4 factors: company age, AI maturity, manufacturing strategy, and innovation capacity. The review uncovers several debates and research gaps left unsolved by the existing literature. In particular, it raises the debate whether the Industry5.0 promise can be achieved while Artificial General Intelligence (AGI) remains out of reach. It explores diverging possible futures driven toward social manufacturing or mass customization. Finally, it discusses alternative AI policies and their incidence on open and internal innovation. We conclude that the effect of AI on innovation capacity can be synergic, deceptive, or substitutive depending on the alignment of the uncovered factors. Moreover, we identify a set of 12 indicators enabling us to measure these factors to predict AI's effect on innovation capacity. These findings provide researchers with a new understanding of the interplay between artificial intelligence and human intelligence. They provide practitioners with decision metrics for a successful transition to Industry 5.0.
2024
Authors
Jakubowski, J; Strzelecka, NW; Ribeiro, RP; Pashami, S; Bobek, S; Gama, J; Nalepa, GJ;
Publication
CoRR
Abstract
2024
Authors
Jesus, SM; Saleiro, P; Silva, IOe; Jorge, BM; Ribeiro, RP; Gama, J; Bizarro, P; Ghani, R;
Publication
CoRR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.