2025
Authors
dos Santos, MR; Cerqueira, V; Soares, C;
Publication
Progress in Artificial Intelligence - 24th EPIA Conference on Artificial Intelligence, EPIA 2025, Faro, Portugal, October 1-3, 2025, Proceedings, Part I
Abstract
Effective selection of forecasting algorithms for time series data is a challenge in machine learning, impacting both predictive accuracy and efficiency. Metalearning, using features extracted from time series, offers a strategic approach to optimize algorithm selection. The utility of this approach depends on the amount of information the features contain about the behavior of the algorithms. Although there are several methods for systematic time series feature extraction, they have never been compared. This paper empirically analyzes the performance of each feature extraction method for algorithm selection and its impact on forecasting accuracy. Our study reveals that TSFRESH, TSFEATURES, and TSFEL exhibit comparable performance at algorithm selection accuracy, adeptly capturing time series characteristics essential for accurate algorithm selection. In contrast, Catch22 is found to be less effective for this purpose. In particular, TSFEL is identified as the most efficient method, balancing dimensionality and predictive performance. These findings provide insights for enhancing forecasting accuracy and efficiency through judicious selection of meta-feature extractors. © 2025 Elsevier B.V., All rights reserved.
2026
Authors
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (9)
Abstract
2026
Authors
Pfahringer, B; Japkowicz, N; Larrañaga, P; Ribeiro, RP; Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (8)
Abstract
2026
Authors
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Pasquali, A; Moniz, N; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (10)
Abstract
2025
Authors
Inácio, R; Cerqueira, V; Barandas, M; Soares, C;
Publication
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track and Demo Track - European Conference, ECML PKDD 2025, Porto, Portugal, September 15-19, 2025, Proceedings, Part X
Abstract
2024
Authors
Santos, M; de Carvalho, A; Soares, C;
Publication
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS
Abstract
Time series forecasting is an important tool for planning and decision-making. Considering this, several forecasting algorithms can be used, with results depending on the characteristics of the time series. The recommendation of the most suitable algorithm is a frequent concern. Metalearning has been successfully used to recommend the best algorithm for a time series analysis task. Additionally, it has been shown that decomposition methods can lead to better results. Based on previously published studies, in the experiments carried out, time series components were used. This work proposes and empirically evaluates METAFORE, a new time series forecasting approach that uses seasonal trend decomposition with Loess and metalearning to recommend suitable algorithms for time series forecasting combinations. Experimental results show that METAFORE can obtain a better predictive performance than single models with statistical significance. In the experiments, METAFORE also outperformed models widely used in the state-of-the-art, such as the long short-term memory neural network architectures, in more than 70%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$70\%$$\end{document} of the time series tested. Finally, the results show that the joint use of metalearning and time series decomposition provides a competitive approach to time series forecasting.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.