2018
Authors
Bessa, RJ; Rua, D; Abreu, C; Machado, P; Andrade, JR; Pinto, R; Gonçalves, C; Reis, M;
Publication
Proceedings of the Ninth International Conference on Future Energy Systems, e-Energy 2018, Karlsruhe, Germany, June 12-15, 2018
Abstract
2022
Authors
Dudkina, E; Villar, J; Bessa, RJ;
Publication
International Conference on the European Energy Market, EEM
Abstract
Decarbonization of energy systems is one of the main tracks in the energy sector, and in this transition, green hydrogen assumes an important role. Considering the variability of renewable energy sources (RES), the flexibility of the hydrogen production could help dealing with imbalances. However, to truly contribute to a greener energy mix, a principle of additivity must be obeyed. In other words, to produce green hydrogen, the energy supplied to the electrolyzers must be renewable and must not entail a decrease in the RES consumed by other loads according to the energy strategic plans. This study integrates power flow tracing (PFT) technique within an optimal power flow (OPF) to determine and maximize the physical flow between the energy from RES generators and the electrolyzer through the existing grid. The proposed method was tested on both radial and meshed IEEE test grids. Simulation results showed that the electrolyzer green supply can be increased by controlling the dispatch of the distributed generators (e.g., CHP) according to the location of the electrolyzer. In addition, installing storage systems nearby load buses allows increasing the amount of green supply by using the RES-based electricity stored. © 2022 IEEE.
2020
Authors
Giebel, G; Shaw, W; Frank, H; Pinson, P; Draxl, C; Zack, J; Möhrlen, C; Kariniotakis, G; Bessa, R;
Publication
Abstract
2020
Authors
Kariniotakis, G; Camal, S; Bessa, R; Pinson, P; Giebel, G; Libois, Q; Legrand, R; Lange, M; Wilbert, S; Nouri, B; Neto, A; Verzijlbergh, R; Sauba, G; Sideratos, G; Korka, E; Petit, S;
Publication
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.