Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Luís Manuel Pessoa

2023

Enhancing NLoS RIS-Aided Localization with Optimization and Machine Learning

Authors
Aguiar, RA; Paulino, N; Pessoa, LM;

Publication
IEEE Globecom Workshops 2023, Kuala Lumpur, Malaysia, December 4-8, 2023

Abstract
This paper introduces two machine learning optimization algorithms to significantly enhance position estimation in Reconfigurable Intelligent Surface (RIS) aided localization for mobile user equipment in Non-Line-of-Sight conditions. Leveraging the strengths of these algorithms, we present two methods capable of achieving extremely high accuracy, reaching sub-centimeter or even sub-millimeter levels at 3.5 GHz. The simulation results highlight the potential of these approaches, showing significant improvements in indoor mobile localization. The demonstrated precision and reliability of the proposed methods offer new opportunities for practical applications in real-world scenarios, particularly in Non-Line-of-Sight indoor localization. By evaluating four optimization techniques, we determine that a combination of a Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) results in localization errors under 30 cm in 90 % of the cases, and under 5 mm for close to 85 % of cases when considering a simulated room of 10 m by 10m where two of the walls are equipped with RIS tiles. © 2023 IEEE.

2023

Concept paper on novel radio frequency resistive switches

Authors
Kiazadeh A.; Deuermeier J.; Carlos E.; Martins R.; Matos S.; Cardoso F.M.; Pessoa L.M.;

Publication
ACM International Conference Proceeding Series

Abstract
For reconfigurable radios where the signals can be easily routed from one band to another band, new radio frequency switches (RF) are a fundament. The main factor driving the power consumption of the reconfigurable intelligent system (RIS) is the need for an intermediate device with static power consumption to maintain a certain surface configuration state. Since power usage scales quadratically with the RIS area, there is a relevant interest in mitigating this drawback so that this technology can be applied to everyday objects without needing such a high intrinsic power consumption. Current switch technologies such as PIN diodes, and field effect transistors (FETs) are volatile electronic devices, resulting in high static power. In addition, dynamic power dissipation related to switching event is also considerable. Regarding energy efficiency, non-volatile radio frequency resistive switch (RFRS) concept may be better alternative solution due to several advantages: smaller area, zero-hold voltage, lower actuation bias for operation, short switching time, scalability and capable to be fabricated in the backend-of-line of standard CMOS process.

2024

Towards truly sustainable IoT systems: the SUPERIOT project

Authors
Katz, M; Paso, T; Mikhaylov, K; Pessoa, L; Fontes, H; Hakola, L; Leppaeniemi, J; Carlos, E; Dolmans, G; Rufo, J; Drzewiecki, M; Sallouha, H; Napier, B; Branquinho, A; Eder, K;

Publication
JOURNAL OF PHYSICS-PHOTONICS

Abstract
This paper provides an overview of the SUPERIOT project, an EU SNS JU (Smart Networks and Services Joint Undertaking) initiative focused on developing truly sustainable IoT systems. The SUPERIOT concept is based on a unique holistic approach to sustainability, proactively developing sustainable solutions considering the design, implementation, usage and disposal/reuse stages. The concept exploits radio and optical technologies to provide dual-mode wireless connectivity and dual-mode energy harvesting as well as dual-mode IoT node positioning. The implementation of the IoT nodes or devices will maximize the use of sustainable printed electronics technologies, including printed components, conductive inks and substrates. The paper describes the SUPERIOT concept, covering the key technical approaches to be used, promising scenarios and applications, project goals and demonstrators which will be developed to the proof-of-concept stage. In addition, the paper briefly discusses some important visions on how this technology may be further developed in the future.

2023

TEC4SEA-Developing maritime technology for a sustainable blue economy

Authors
Monica, P; Cruz, N; Almeida, JM; Silva, A; Silva, E; Pinho, C; Almeida, C; Viegas, D; Pessoa, LM; Lima, AP; Martins, A; Zabel, F; Ferreira, BM; Dias, I; Campos, R; Araujo, J; Coelho, LC; Jorge, PS; Mendes, J;

Publication
OCEANS 2023 - LIMERICK

Abstract
One way to mitigate the high costs of doing science or business at sea is to create technological infrastructures possessing all the skills and resources needed for successful maritime operations, and make those capabilities and skills available to the external entities requiring them. By doing so, the individual economic and scientific agents can be spared the enormous effort of creating and maintaining their own, particular set of equivalent capabilities, thus drastically lowering their initial operating costs. In addition to cost savings, operating based on fully-fledged, shared infrastructures not only allows the use of more advanced scientific equipment and highly skilled personnel, but it also enables the business teams (be it industry or research) to focus on their goals, rather than on equipment, logistics, and support. This paper will describe the TEC4SEA infrastructure, created precisely to operate as described. This infrastructure has been under implementation in the last few years, and has now entered its operational phase. This paper will describe it, present its current portfolio of services, and discuss the most relevant assets and facilities that have been recently acquired, so that the research and industrial communities requiring the use of such assets can fully evaluate their adequacy for their own purposes and projects.

2012

Performance Assessment of UWB-Over-Fiber and Applications

Authors
M.B., J; M., L; Coelho, D; M., H; C.S., J;

Publication
Ultra Wideband - Current Status and Future Trends

Abstract

2012

Experimental and Theoretical Performance Assessment of WiFi-over-Fiber Using Low Cost Directly Modulated VCSELs

Authors
Coelho, D; OLiveira, JMB; Pessoa, LM; Castro, JCS; Salgado, HM;

Publication
2012 14TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2012)

Abstract
In this work, an in-depth analysis concerning the transmission performance of IEEE802.11g/n WiFi signals in a radio-over-fiber system is presented. Low-cost optical/electrical transceivers based on 850 nm vertical cavity surface emitting lasers (VCSELs) and PIN photodiodes are considered. System modelling includes the impact of noise generated in the optical path, such as relative intensity noise (RIN), shot noise, photodetector thermal noise, clipping and intermodulation distortion. Analytic results based on Volterra series analysis for the performance of the system in terms of SNR and EVM for several optical modulation index values are obtained. The theoretical analysis is also compared with experimental results. Among several conclusions, it is observed that the laser intermodulation distortion, clipping and RIN are the most relevant factors.

  • 14
  • 17