Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Carlos Moreira

2024

EPSO-based Methodology for Modelling Equivalent PV-Battery Hybrid Power Plants using Generic Converter Models

Authors
Sousa, P; Castro, V; Moreira, L; Lopes, P;

Publication
IET Conference Proceedings

Abstract
System operators (SO) require Converted-Interfaced Renewable Energy Systems (CI-RES) power plants investors to provide demonstrative studies related to different operational performance capabilities and advanced system services provision to the grid. Typically, these studies rely on Original Equipment Manufacturer (OEM) simulation models for the power converters and CI-RES power plants control units. Such models might be unavailable to the SO due to confidentiality reasons and might present challenges in parametrization due to their complexity. Moreover, compatibility issues between simulation packages used by the SO and those utilized by the independent entity performing the studies creates additional difficulties. Hence, SO demand to power plant investors the proving of equivalent simulation models and resorting preferably to standardized open-source models. This work presents a methodology to derive an equivalent model of a CI-RES power plant using Generic Renewable Energy Models (GREM) in which the parameters identification is performed exploiting an Evolutionary Particle Swarm Optimization (EPSO) to capture the plant's dynamic behaviour at the Point of Interconnection (POI) in face of a set of reference network disturbances. Considering as Case-Study the integration of a PV-Battery Hybrid power plat into the electrical system of Terceira Island, the results demonstrate successful derivation of GREM parameters allowing the representation of the dynamic behaviour of the power plant in face of network disturbance events. © Energynautics GmbH.

2024

Flexibility extension in hydropower for the provision of frequency control services within the European energy transition

Authors
Vasconcelos, MH; Castro, MV; Nicolet, C; Moreira, CL;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This paper presents a comprehensive assessment of the large-scale deployment of hydropower on the provision of frequency regulation services, when equipped with the extended flexibility solutions being developed and/or tested within the scope of the XFLEX HYDRO project. The current analysis is performed on the Iberian Peninsula (IP) power grid considering its interconnection to the Continental Europe (CE) system, since this power system zone is expected to have the most severe frequency transient behaviour in future scenarios with increased shares of variable renewable energies. For this purpose, prospective scenarios with increased shares of time variable renewable generation were identified and analysed. To assess the impacts of the hydropower flexibility solutions on frequency dynamics after a major active power loss, extensive time domain simulations were performed of the power system, including reliable reduced order dynamic models for the hydropower flexibility solutions under evaluation. This research assesses the effects of synchronous and synthetic inertia, and of the Frequency Containment Reserve (FCR) and Fast Frequency Response (FFR) services as specified in European grid codes. The main findings highlight the potential of hydropower inertia and of adopting a variable speed technology for enhancing frequency stability, while contribute to better understand the role of hydropower plants in future power systems.

2023

Multi-Class Stability Analysis of the Grid-Forming Placement Problem

Authors
Fernandes, F; Lopes, JP; Moreira, C;

Publication
2023 IEEE BELGRADE POWERTECH

Abstract
This paper evidences the ability of a VSM-based grid-forming to mitigate stability problems of different classes, raising a special concern towards the importance of its location in systems with large converter-interfaced renewable energy systems. Within this context, a multi-class stability assessment, that pillars on the simulation of different nature disturbances and in the subsequent evaluation of a 4 index set, was performed. Such analysis was carried out on a modified version of the IEEE39 Test System, using DigSILENT Power Factory as the simulation engine.

2023

Including Dynamic Security Constraints in Isolated Power Systems Unit Commitment/Economic Dispatch: a Machine Learning-based Approach

Authors
de Sousa, RP; Moreira, C; Carvalho, L; Matos, M;

Publication
2023 IEEE BELGRADE POWERTECH

Abstract
Isolated power systems with high shares of renewables can require additional inertia as a complementary resource to assure the system operation in a dynamic safe region. This paper presents a methodology for the day-ahead Unit Commitment/ Economic Dispatch (UC/ED) for low-inertia power systems including dynamic security constraints for key frequency indicators computed by an Artificial Neural-Network (ANN)-supported Dynamic Security Assessment (DSA) tool. The ANN-supported DSA tool infers the system dynamic performance with respect to key frequency indicators following critical disturbances and computes the additional synchronous inertia that brings the system back to its dynamic security region, by dispatching Synchronous Condensers (SC) if required. The results demonstrate the effectiveness of the methodology proposed by enabling the system operation within safe frequency margins for a set of high relevance fault type contingencies while minimizing the additional costs associated with the SC operation.

2005

Secondary load-frequency control for microgrids in islanded operation

Authors
Madureira, A; Faculty of Engineering of the University of Porto, INESC, Porto, Portugal,; Moreira, C; Pecas Lopes, J;

Publication
Renewable Energy and Power Quality Journal

Abstract
The objective of this paper is to present novel control strategies for MicroGrid operation, especially in islanded mode. The control strategies involve mainly the coordination of secondary load-frequency control by a MicroGrid Central Controller that heads a hierarchical control system able to assure stable and secure operation when the islanding of the MicroGrid occurs and in load-following situations in islanded mode.

2006

Preliminary steady state and dynamic analysis of a microgrid system

Authors
Madureira, A; Moreira, C; Peças Lopes, J;

Publication
Renewable Energy and Power Quality Journal

Abstract
The objective of this paper is to analyse the steady state and dynamic behaviour of a MicroGrid system containing one microturbine generating Combined Heat and Power feeding some small local loads in islanded mode of operation. Future operating scenarios were also analysed and simulated, namely considering the installation of photovoltaic panels near consumers.

  • 16
  • 20