Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Orlando Frazão

2010

Manufacturing and testing composite overwrapped pressure vessels with embedded sensors

Authors
Frias, C; Faria, H; Frazao, O; Vieira, P; Marques, AT;

Publication
MATERIALS & DESIGN

Abstract
In this research programme, methodologies for structural health monitoring (SHM) of composite over-wrapped pressure vessels (COPV) were addressed. So, this work is part of the development of a COPV laboratorial prototype incorporated with non-destructive sensing technologies. The aim is to detect and identify critical aspects that can happen during operation, in order to reduce possible safety problems. Fibre Bragg grating (FBG) optical sensors and polyvinylidene fluoride (PVDF) polymeric piezoelectric were the selected sensing technologies. These sensors were embedded in the liner-composite interface during its manufacturing and monitored the prototype while tested under cyclic internal pressure loading. The measurements collected from the sensors were compiled with the analysis of test data and are presented in this paper. Also, the suitability of the two sensing technologies, issues related to sensor embedding and the monitoring strategy are discussed.

2009

Mechanical characterization of bone cement using fiber Bragg grating sensors

Authors
Frias, C; Frazao, O; Tavares, S; Vieira, A; Marques, AT; Simoes, J;

Publication
MATERIALS & DESIGN

Abstract
The aim of this work was the study and understanding of the behavior and linearity of an optical fiber Bragg grating (FBG) sensor embedded in bone cement. Test its ability to monitor strains inside bone cement during different mechanical tests, at real-time. Bone cement is a biomaterials based on polymethacrylate used as fixation method in artificial joints. Work as a bonding, load transfer and optimal Stress/strain distribution inside the complex human body environment, Bone cement is the weakest element in a joint implant, being considered the main reason of prosthesis loosening. Inside the bone cement, its temperature, longitudinal strain and load were measured using fiber Bragg gratings. All the measurements report a linear response showing a good adaptation and optimization of the load transfer between the biomaterial and the embedded optical sensor.

2012

Interferometer based on a d-shape chaotic optical fiber for measurement of multiparameters

Authors
Silva, S; Coelho, L; Roy, P; Frazao, O;

Publication
Photonic Sensors

Abstract
An interferometer based on a D-shape chaotic optical fiber for measurement of multiparameters was proposed. The sensing structure relied on a D-shape fiber section spliced in between two singlemode fibers and interrogated in transmission. The optical spectrum was composed by multiple interference loss peaks, which were sensitive to the refractive index, temperature and strain-maximum sensitivities of 95.2 nm/RIU, 10.5 pm/ and -3.51 pm/µe, respectively, could be achieved. © The Author(s) 2012.

2011

Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering

Authors
Martins, HF; Marques, MB; Frazao, O;

Publication
APPLIED PHYSICS B-LASERS AND OPTICS

Abstract
A temperature-insensitive strain sensor based on Four-Wave Mixing (FWM) using two Raman fiber Bragg grating (FBG) lasers with cooperative Rayleigh scattering is proposed. Two FBG were used to form two linear cavities laser sensors based on Raman amplification combined with cooperative Rayleigh scattering. Due to the very low dispersion coefficient of the fiber, it is possible to obtain the FWM using the two lasers. This configuration allows the operation as a temperature-insensitive strain sensor where both sensors have the same sensitivity to temperature but only one of the FBG laser is sensitive to strain. The difference between the wavelengths of the signal sensor and the converted signal presents a strain coefficient sensitivity of 2 pm/mu epsilon with insensitivity to temperature. The FWM efficiency is also dependent on the applied strain, but it is temperature independent, presenting a maximum sensibility of 0.01 dB/mu epsilon.

2012

Multimode interference in outer cladding large-core, air-clad photonic crystal fiber

Authors
Coelho, L; Kobelke, J; Schuster, K; Frazao, O;

Publication
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
It is described a large-core air-clad photonic crystal fiber-based sensing structure using the outer cladding as a light guide, which is highly sensitive to refractive index. The sensing head is based on multimodal interference, and relies on a single mode/large-core air-clad photonic crystal fiber/single mode fiber configuration. Using this configuration and controlling the light to travel in a segment of the outer cladding multimode fiber, it was possible to implement a sensing head and the results were obtained independently from variations of temperature, strain and refractive index. (c) 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:10091011, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26726

2011

DESIGN AND EXPERIMENTAL EVALUATION OF A COMPOSITE STRAIN ROSETTE USING FIBER BRAGG GRATING

Authors
Ramos, CA; de Oliveira, R; Marques, AT; Frazao, O;

Publication
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
The purpose of this study is to design a composite strain rosette using embedded fiber Bragg grating (FBG) sensors. Those strain rosettes are meant to be used as alternative to the conventional electric rosettes in structural health monitoring applications being glued at the structure surface. A thin (400 mu m) and flexible weaved carbon fiber reinforced plastic (CFRP) composite rosette is proposed. The three FBG sensors were written in a single optical fiber. Special care was devoted to the embedding process of the optical fiber sensors in the weaved composite plate in order to avoid significant alteration of the light reflected back by the FBG. The strain response of the composite rosette was compared to electrical strain gage's when applied at the surface of an aluminium sample submitted to tension, flexion and to dynamic strain. (C) 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett 53: 1853-1857, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26098

  • 44
  • 86