2023
Authors
Albuquerque, T; Fang, ML; Wiestler, B; Delbridge, C; Vasconcelos, MJM; Cardoso, JS; Schüffler, P;
Publication
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2023 WORKSHOPS
Abstract
The most malignant tumors of the central nervous system are adult-type diffuse gliomas. Historically, glioma subtype classification has been based on morphological features. However, since 2016, WHO recognizes that molecular evaluation is critical for subtyping. Among molecular markers, the mutation status of IDH1 and the codeletion of 1p/19q are crucial for the precise diagnosis of these malignancies. In pathology laboratories, however, manual screening for those markers is time-consuming and susceptible to error. To overcome these limitations, we propose a novel multimodal biomarker classification method that integrates image features derived from brain magnetic resonance imaging and histopathological exams. The proposed model consists of two branches, the first branch takes as input a multi-scale Hematoxylin and Eosin whole slide image, and the second branch uses the pre-segmented region of interest from the magnetic resonance imaging. Both branches are based on convolutional neural networks. After passing the exams by the two embedding branches, the output feature vectors are concatenated, and a multi-layer perceptron is used to classify the glioma biomarkers as a multi-class problem. In this work, several fusion strategies were studied, including a cascade model with mid-fusion; a mid-fusion model, a late fusion model, and a mid-context fusion model. The models were tested using a publicly available data set from The Cancer Genome Atlas. Our cross-validated classification models achieved an area under the curve of 0.874, 0.863, and 0.815 for the proposed multimodal, magnetic resonance imaging, and Hematoxylin and Eosin stain slide images respectively, indicating our multimodal model outperforms its unimodal counterparts and the state-of-the-art glioma biomarker classification methods.
2023
Authors
Ferreira, G; Teixeira, M; Belo, R; Silva, W; Cardoso, JS;
Publication
2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN
Abstract
The application of machine learning algorithms to predict the mechanism of action (MoA) of drugs can be highly valuable and enable the discovery of new uses for known molecules. The developed methods are usually evaluated with small subsets of MoAs with large support, leading to deceptively good generalization. However, these datasets may not accurately represent a practical use, due to the limited number of target MoAs. Accurate predictions for these rare drugs are important for drug discovery and should be a point of focus. In this work, we explore different training strategies to improve the performance of a well established deep learning model for rare drug MoA prediction. We explored transfer learning by first learning a model for common MoAs, and then using it to initialize the learning of another model for rarer MoAs. We also investigated the use of a cascaded methodology, in which results from an initial model are used as additional inputs to the model for rare MoAs. Finally, we proposed and tested an extension of Mixup data augmentation for multilabel classification. The baseline model showed an AUC of 73.2% for common MoAs and 62.4% for rarer classes. From the investigated methods, Mixup alone failed to improve the performance of a baseline classifier. Nonetheless, the other proposed methods outperformed the baseline for rare classes. Transfer Learning was preferred in predicting classes with less than 10 training samples, while the cascaded classifiers (with Mixup) showed better predictions for MoAs with more than 10 samples. However, the performance for rarer MoAs still lags behind the performance for frequent MoAs and is not sufficient for the reliable prediction of rare MoAs.
2023
Authors
Neto, PC; Caldeira, E; Cardoso, JS; Sequeira, AF;
Publication
International Conference of the Biometrics Special Interest Group, BIOSIG 2023, Darmstadt, Germany, September 20-22, 2023
Abstract
With the ever-growing complexity of deep learning models for face recognition, it becomes hard to deploy these systems in real life. Researchers have two options: 1) use smaller models; 2) compress their current models. Since the usage of smaller models might lead to concerning biases, compression gains relevance. However, compressing might be also responsible for an increase in the bias of the final model. We investigate the overall performance, the performance on each ethnicity subgroup and the racial bias of a State-of-the-Art quantization approach when used with synthetic and real data. This analysis provides a few more details on potential benefits of performing quantization with synthetic data, for instance, the reduction of biases on the majority of test scenarios. We tested five distinct architectures and three different training datasets. The models were evaluated on a fourth dataset which was collected to infer and compare the performance of face recognition models on different ethnicity.
2019
Authors
Ferreira, PM; Sequeira, AF; Pernes, D; Rebelo, A; Cardoso, JS;
Publication
2019 International Conference of the Biometrics Special Interest Group, BIOSIG 2019 - Proceedings
Abstract
Despite the high performance of current presentation attack detection (PAD) methods, the robustness to unseen attacks is still an under addressed challenge. This work approaches the problem by enforcing the learning of the bona fide presentations while making the model less dependent on the presentation attack instrument species (PAIS). The proposed model comprises an encoder, mapping from input features to latent representations, and two classifiers operating on these underlying representations: (i) the task-classifier, for predicting the class labels (as bona fide or attack); and (ii) the species-classifier, for predicting the PAIS. In the learning stage, the encoder is trained to help the task-classifier while trying to fool the species-classifier. Plus, an additional training objective enforcing the similarity of the latent distributions of different species is added leading to a 'PAI-species'-independent model. The experimental results demonstrated that the proposed regularisation strategies equipped the neural network with increased PAD robustness. The adversarial model obtained better loss and accuracy as well as improved error rates in the detection of attack and bona fide presentations. © 2019 Gesellschaft fuer Informatik.
2023
Authors
Vidal, PL; Moura, Jd; Novo, J; Ortega, M; Cardoso, JS;
Publication
IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2023, Rhodes Island, Greece, June 4-10, 2023
Abstract
Optical Coherence Tomography (OCT) is the major diagnostic tool for the leading cause of blindness in developed countries: Diabetic Macular Edema (DME). Depending on the type of fluid accumulations, different treatments are needed. In particular, Cystoid Macular Edemas (CMEs) represent the most severe scenario, while Diffuse Retinal Thickening (DRT) is an early indicator of the disease but a challenging scenario to detect. While methodologies exist, their explanatory power is limited to the input sample itself. However, due to the complexity of these accumulations, this may not be enough for a clinician to assess the validity of the classification. Thus, in this work, we propose a novel approach based on multi-prototype networks with vision transformers to obtain an example-based explainable classification. Our proposal achieved robust results in two representative OCT devices, with a mean accuracy of 0.9099 ± 0.0083 and 0.8582 ± 0.0126 for CME and DRT-type fluid accumulations, respectively. © 2023 IEEE.
2024
Authors
Campos, F; Cerqueira, FG; Cruz, RPM; Cardoso, JS;
Publication
PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I
Abstract
Autonomous driving can reduce the number of road accidents due to human error and result in safer roads. One important part of the system is the perception unit, which provides information about the environment surrounding the car. Currently, most manufacturers are using not only RGB cameras, which are passive sensors that capture light already in the environment but also Lidar. This sensor actively emits laser pulses to a surface or object and measures reflection and time-of-flight. Previous work, YOLOP, already proposed a model for object detection and semantic segmentation, but only using RGB. This work extends it for Lidar and evaluates performance on KITTI, a public autonomous driving dataset. The implementation shows improved precision across all objects of different sizes. The implementation is entirely made available: https://github.com/filipepcampos/yolomm.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.