2022
Authors
Silva, W; Goncalves, T; Harma, K; Schroder, E; Obmann, VC; Barroso, MC; Poellinger, A; Reyes, M; Cardoso, JS;
Publication
SCIENTIFIC REPORTS
Abstract
Currently, radiologists face an excessive workload, which leads to high levels of fatigue, and consequently, to undesired diagnosis mistakes. Decision support systems can be used to prioritize and help radiologists making quicker decisions. In this sense, medical content-based image retrieval systems can be of extreme utility by providing well-curated similar examples. Nonetheless, most medical content-based image retrieval systems work by finding the most similar image, which is not equivalent to finding the most similar image in terms of disease and its severity. Here, we propose an interpretability-driven and an attention-driven medical image retrieval system. We conducted experiments in a large and publicly available dataset of chest radiographs with structured labels derived from free-text radiology reports (MIMIC-CXR-JPG). We evaluated the methods on two common conditions: pleural effusion and (potential) pneumonia. As ground-truth to perform the evaluation, query/test and catalogue images were classified and ordered by an experienced board-certified radiologist. For a profound and complete evaluation, additional radiologists also provided their rankings, which allowed us to infer inter-rater variability, and yield qualitative performance levels. Based on our ground-truth ranking, we also quantitatively evaluated the proposed approaches by computing the normalized Discounted Cumulative Gain (nDCG). We found that the Interpretability-guided approach outperforms the other state-of-the-art approaches and shows the best agreement with the most experienced radiologist. Furthermore, its performance lies within the observed inter-rater variability.
2024
Authors
Beirão, MM; Matos, J; Gonçalves, T; Kase, C; Nakayama, LF; Freitas, Dd; Cardoso, JS;
Publication
CoRR
Abstract
2015
Authors
Gamelas Sousa, R; Rocha Neto, AR; Cardoso, JS; Barreto, GA;
Publication
Neural Computing and Applications
Abstract
Reject option is a technique used to improve classifier’s reliability in decision support systems. It consists in withholding the automatic classification of an item, if the decision is considered not sufficiently reliable. The rejected item is then handled by a different classifier or by a human expert. The vast majority of the works on this issue has been concerned with the development of reject option mechanisms to be used by supervised learning architectures (e.g., MLP, LVQ or SVM). In this paper, however, we aim at proposing alternatives to this view, which are based on the self-organizing map (SOM), originally an unsupervised learning scheme, but that has also been successfully used in the design of prototype-based classifiers. The basic hypothesis we defend is that it is possible to design SOM-based classifiers endowed with reject option mechanisms whose performances are comparable to or better than those achieved by standard supervised classifiers. For this purpose, we carried out a comprehensively evaluation of the proposed SOM-based classifiers on two synthetic and three real-world datasets. The obtained results suggest that the proposed SOM-based classifiers consistently outperform standard supervised classifiers. © 2015 The Natural Computing Applications Forum
2025
Authors
Klöckner, P; Teixeira, J; Montezuma, D; Cardoso, JS; Horlings, HM; de Oliveira, SP;
Publication
Abstract
2025
Authors
Ferreira, P; Zolfagharnasab, MH; Gonçalves, T; Bonci, E; Mavioso, C; Cardoso, MJ; Cardoso, JS;
Publication
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care - Second Deep Breast Workshop, Deep-Breath 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings
Abstract
Accurate retrieval of post-surgical images plays a critical role in surgical planning for breast cancer patients. However, current content-based image retrieval methods face challenges related to limited interpretability, poor robustness to image noise, and reduced generalization across clinical settings. To address these limitations, we propose a multistage retrieval pipeline integrating saliency-based explainability, noise-reducing image pre-processing, and ensemble learning. Evaluated on a dataset of post-operative breast cancer patient images, our approach achieves contrastive accuracy of 77.67% for Excellent/Good and 84.98% for Fair/Poor outcomes, surpassing prior studies by 8.37% and 11.80%, respectively. Explainability analysis provided essential insight by showing that feature extractors often attend to irrelevant regions, thereby motivating targeted input refinement. Ablations show that expanded bounding box inputs improve performance over original images, with gains of 0.78% and 0.65% contrastive accuracy for Excellent/Good and Fair/Poor, respectively. In contrast, the use of segmented images leads to a performance drop (1.33% and 1.65%) due to the loss of contextual cues. Furthermore, ensemble learning yielded additional gains of 0.89% and 3.60% over the best-performing single-model baselines. These findings underscore the importance of targeted input refinement and ensemble integration for robust and generalizable image retrieval systems. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Zolfagharnasab, MH; Gonalves, T; Ferreira, P; Cardoso, MJ; Cardoso, JS;
Publication
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care - Second Deep Breast Workshop, Deep-Breath 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings
Abstract
Breast segmentation has a critical role for objective pre and postoperative aesthetic evaluation but challenged by limited data (privacy concerns), class imbalance, and anatomical variability. As a response to the noted obstacles, we introduce an encoder–decoder framework with a Segment Anything Model (SAM) backbone, enhanced with synthetic depth maps and a multiterm loss combining weighted crossentropy, convexity, and depth alignment constraints. Evaluated on a 120patient dataset split into 70% training, 10% validation, and 20% testing, our approach achieves a balanced test dice score of 98.75%—a 4.5% improvement over prior methods—with dice of 95.5% (breast) and 89.2% (nipple). Ablations show depth injection reduces noise and focuses on anatomical regions, yielding dice gains of 0.47% (body) and 1.04% (breast). Geometric alignment increases convexity by almost 3% up to 99.86%, enhancing geometric plausibility of the nipple masks. Lastly, crossdataset evaluation on CINDERELLA samples demonstrates robust generalization, with small performance gain primarily attributable to differences in annotation styles. © 2025 Elsevier B.V., All rights reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.