Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Manuel Ricardo

2002

IP traffic control on UNITS terminal equipment

Authors
Ricardo, M; Soares, R; Dias, J; Ruela, J;

Publication
MULTIACCESS, MOBILITY AND TELETRAFFIC FOR WIRELESS COMMUNICATIONS, VOLUME 6

Abstract
The paper presents the architecture of an UNITS terminal equipment optimised for IP based communications and describes the traffic control mechanisms required for supporting emerging 3G services.

2004

Cross-layer design in 4G wireless terminals

Authors
Carneiro, G; Ruela, J; Ricardo, M;

Publication
IEEE WIRELESS COMMUNICATIONS

Abstract
The classical TCP/IP layered protocol architecture is beginning to show signs of age. In order to cope with problems such as the poor performance of wireless links and mobile terminals, including the high error rate of wireless network interfaces, power saving requirements, quality of service, and an increasingly dynamic network environment, a protocol architecture that considers cross-layer interactions seems to be required. This article describes a framework for further enhancements of the traditional IP-based protocol stack to meet current and future requirements. Known problems associated with the strictly layered protocol architecture are summarized and classified, and a first, solution involving cross-layer design is proposed.

2023

UAV-Assisted Wireless Communications: An Experimental Analysis of A2G and G2A Channels

Authors
Shafafi, K; Almeida, EN; Coelho, A; Fontes, H; Ricardo, M; Campos, R;

Publication
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings

Abstract
Unmanned Aerial Vehicles (UAVs) offer promising potential as communications node carriers, providing on-demand wireless connectivity to users. While existing literature presents various wireless channel models, it often overlooks the impact of UAV heading. This paper provides an experimental characterization of the Air-to-Ground (A2G) and Ground-to-Air (G2A) wireless channels in an open environment with no obstacles nor interference, considering the distance and the UAV heading. We analyze the received signal strength indicator and the TCP throughput between a ground user and a UAV, covering distances between 50 m and 500 m, and considering different UAV headings. Additionally, we characterize the antenna’s radiation pattern based on UAV headings. The paper provides valuable perspectives on the capabilities of UAVs in offering on-demand and dynamic wireless connectivity, as well as highlights the significance of considering UAV heading and antenna configurations in real-world scenarios.

2023

Traffic-aware gateway placement and queue management in flying networks

Authors
Coelho, A; Campos, R; Ricardo, M;

Publication
AD HOC NETWORKS

Abstract
Unmanned Aerial Vehicles (UAVs) have emerged as adequate platforms to carry communications nodes, including Wi-Fi Access Points and cellular Base Stations. This has led to the concept of flying networks composed of UAVs as a flexible and agile solution to provide on-demand wireless connectivity anytime, anywhere. However, state of the art works have been focused on optimizing the placement of the access network providing connectivity to ground users, overlooking the backhaul network design. In order to improve the overall Quality of Service (QoS) offered to ground users, the placement of Flying Gateways (FGWs) and the size of the queues configured in the UAVs need to be carefully defined to meet strict performance requirements. The main contribution of this article is a traffic-aware gateway placement and queue management (GPQM) algorithm for flying networks. GPQM takes advantage of knowing in advance the positions of the UAVs and their traffic demand to determine the FGW position and the queue size of the UAVs, in order to maximize the aggregate throughput and provide stochastic delay guarantees. GPQM is evaluated by means of ns-3 simulations, considering a realistic wireless channel model. The results demonstrate significant gains in the QoS offered when GPQM is used.

2023

Position-Based Machine Learning Propagation Loss Model Enabling Fast Digital Twins of Wireless Networks in ns-3

Authors
Almeida, EN; Fontes, H; Campos, R; Ricardo, M;

Publication
PROCEEDINGS OF THE 2023 WORKSHOP ON NS-3, WNS3 2023

Abstract
Digital twins have been emerging as a hybrid approach that combines the benefits of simulators with the realism of experimental testbeds. The accurate and repeatable set-ups replicating the dynamic conditions of physical environments, enable digital twins of wireless networks to be used to evaluate the performance of next-generation networks. In this paper, we propose the Position-based Machine Learning Propagation Loss Model (P-MLPL), enabling the creation of fast and more precise digital twins of wireless networks in ns-3. Based on network traces collected in an experimental testbed, the P-MLPL model estimates the propagation loss suffered by packets exchanged between a transmitter and a receiver, considering the absolute node's positions and the traffic direction. The P-MLPL model is validated with a test suite. The results show that the P-MLPL model can predict the propagation loss with a median error of 2.5 dB, which corresponds to 0.5x the error of existing models in ns-3. Moreover, ns-3 simulations with the P-MLPL model estimated the throughput with an error up to 2.5 Mbit/s, when compared to the real values measured in the testbed.

2022

An Algorithm for Placing and Allocating Communications Resources Based on Slicing-Aware Flying Access and Backhaul Networks

Authors
Coelho, A; Rodrigues, J; Fontes, H; Campos, R; Ricardo, M;

Publication
IEEE ACCESS

Abstract
Flying networks, composed of Unmanned Aerial Vehicles (UAVs) acting as mobile Base Stations and Access Points, have emerged to provide on-demand wireless connectivity, especially due to their positioning capability. Still, existing solutions are focused on improving aggregate network performance using a best-effort approach. This may compromise the use of multiple services with different performance requirements. Network slicing has emerged in 5G networks to address the problem, allowing to meet different Quality of Service (QoS) levels on top of a shared physical network infrastructure. However, Mobile Network Operators typically use fixed Base Stations to satisfy the requirements of different network slices, which may not be feasible due to limited resources and the dynamism of some scenarios.We propose an algorithm for enabling the joint placement and allocation of communications resources in Slicing-aware Flying Access and Backhaul networks- SurFABle. SurFABle allows the computation of the amount of communications resources needed, namely the number of UAVs acting as Flying Access Points and Flying Gateways, and their placement. The performance evaluation carried out by means of ns-3 simulations and an experimental testbed shows that SurFABle makes it possible to meet heterogeneous QoS levels of multiple network slices using the minimum number of UAVs.

  • 25
  • 26