Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Manuel Ricardo

2025

A Vision-aided Open Radio Access Network for Obstacle-aware Wireless Connectivity

Authors
Simões, C; Coelho, A; Ricardo, M;

Publication
20th Wireless On-Demand Network Systems and Services Conference, WONS 2025, Hintertux, Austria, January 27-29, 2025

Abstract
High-frequency radio networks, including those operating in the millimeter-wave bands, are sensible to Line-of-Sight (LoS) obstructions. Computer Vision (CV) algorithms can be leveraged to improve network performance by processing and interpreting visual data, enabling obstacle avoidance and ensuring LoS signal propagation. We propose a vision-aided Radio Access Network (RAN) based on the O-RAN architecture and capable of perceiving the surrounding environment. The vision-aided RAN consists of a gNodeB (gNB) equipped with a video camera that employs CV techniques to extract critical environmental information. An xApp is used to collect and process metrics from the RAN and receive data from a Vision Module (VM). This enhances the RAN's ability to perceive its surroundings, leading to better connectivity in challenging environments. © 2025 IFIP.

2025

A Framework to Develop and Validate RL-Based Obstacle-Aware UAV Positioning Algorithms

Authors
Shafafi, K; Ricardo, M; Campos, R;

Publication
CoRR

Abstract

2024

On-demand 5G Private Networks using a Mobile Cell

Authors
Coelho, A; Ruela, J; Queirós, G; Trancoso, R; Correia, PF; Ribeiro, F; Fontes, H; Campos, R; Ricardo, M;

Publication
CoRR

Abstract

2024

Mobile Node Emulator for 5G Integrated Access and Backhaul Networks

Authors
Cojocaru, I; Coelho, A; Ricardo, M;

Publication
2024 20TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS, WIMOB

Abstract
The Integrated Access and Backhaul (IAB) 5G network architecture, introduced in 3GPP Release 16, leverages a shared 5G spectrum for both access and backhaul networks. Due to the novelty of IAB, there is a lack of suitable implementations and performance evaluations. This paper addresses this gap by proposing EMU-IAB, a mobility emulator for private standalone 5G IAB networks. The proposed emulation environment comprises a 5G Core Network, an IAB-enabled Radio Access Network (RAN), leveraging the Open-RAN (O-RAN) architecture. The RAN includes a fixed IAB Donor, a mobile IAB Node, and multiple User Equipments (UEs). The mobility of the IAB Node is managed through EMU-IAB, which allows defining the path loss of emulated wireless channels. The validation of EMU-IAB was conducted under a realistic IAB node mobility scenario, addressing different traffic demand from the UEs.

2025

Joint Mobile IAB Node Positioning and Scheduler Selection in Locations With Significant Obstacles

Authors
Correia, PF; Coelho, A; Ricardo, M;

Publication
2025 JOINT EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS & 6G SUMMIT, EUCNC/6G SUMMIT

Abstract
Integrated Access and Backhaul (IAB) in cellular networks combines access and backhaul within a wireless infrastructure reducing reliance on fibre-based backhaul. This enables flexible and more cost-effective network expansion, especially in hard-to-reach areas. Positioning a mobile IAB node (MIAB) in a seaport environment, in order to ensure on-demand, resilient wireless connectivity, presents unique challenges due to the high density of User Equipments (UEs) and potential shadowing effects caused by obstacles. This paper addresses the problem of positioning MIABs within areas containing UEs, fixed IAB donors (FIABs), and obstacles. Our approach considers user associations and different types of scheduling, ensuring MIABs and FIABs meet the capacity requirements of a special team of served UEs, while not exceeding backhaul capacity. With a Genetic Algorithm solver, we achieve capacity improvement gains, by up to 200% for the 90th percentile, particularly during emergency capacity demands.

2024

Positioning of a Next Generation Mobile Cell to Maximise Aggregate Network Capacity

Authors
Correia, PF; Coelho, A; Ricardo, M;

Publication
CoRR

Abstract
In wireless communications, the need to cover operation areas, such as seaports, is at the forefront of discussion, especially regarding network capacity provisioning. Radio network planning typically involves determining the number of fixed cells, considering link budgets and deploying them geometrically centered across targeted areas. This paper proposes a solution to determine the optimal position for a mobile cell, considering 3GPP pathloss models. The obtained position for the mobile cell maximises the aggregate network capacity offered to a set of User Equipments (UEs), with gains up to 187% compared to the positioning of the mobile cell at the UEs’ geometrical center. The proposed solution can be used by network planners and integrated into network optimisation tools. This has the potential to reduce costs associated with the radio access network planning by enhancing flexibility for on-demand deployments.

  • 14
  • 26