Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRACS

2019

A Survey on Using Kolmogorov Complexity in Cybersecurity

Authors
Resende, JS; Martins, R; Antunes, L;

Publication
ENTROPY

Abstract
Security and privacy concerns are challenging the way users interact with devices. The number of devices connected to a home or enterprise network increases every day. Nowadays, the security of information systems is relevant as user information is constantly being shared and moving in the cloud; however, there are still many problems such as, unsecured web interfaces, weak authentication, insecure networks, lack of encryption, among others, that make services insecure. The software implementations that are currently deployed in companies should have updates and control, as cybersecurity threats increasingly appearing over time. There is already some research towards solutions and methods to predict new attacks or classify variants of previous known attacks, such as (algorithmic) information theory. This survey combines all relevant applications of this topic (also known as Kolmogorov Complexity) in the security and privacy domains. The use of Kolmogorov-based approaches is resource-focused without the need for specific knowledge of the topic under analysis. We have defined a taxonomy with already existing work to classify their different application areas and open up new research questions.

2019

Preface

Authors
Novais, P; Jung, JJ; Villarrubia, G; Fernández Caballero, A; Navarro, E; González, P; Carneiro, D; Pinto, A; Campbell, AT; Duraes, D;

Publication
Advances in Intelligent Systems and Computing

Abstract

2019

Ambient Intelligence - Software and Applications -, 9th International Symposium on Ambient Intelligence, ISAmI 2018, Toledo, Spain, 20-22 June 2018

Authors
Novais, P; Jung, JJ; González, GV; Caballero, AF; Navarro, E; González, P; Carneiro, D; Pinto, A; Campbell, AT; Durães, D;

Publication
ISAmI

Abstract

2019

Blockchain Based Informed Consent with Reputation Support

Authors
de Sousa, HR; Pinto, A;

Publication
Blockchain and Applications - International Congress, BLOCKCHAIN 2019, Avila, Spain, 26-28 June, 2019.

Abstract
Digital economy relies on global data exchange flows. On May 25th 2018 the GDPR came into force, representing a shift in data protection legislation by tightening data protection rules. This paper introduces an innovative solution that aims to diminish the burden resulting from new regulatory demands on all stakeholders. The presented solution allows the data controller to collect the consent, of a European citizen, in accordance to the GDPR and persist proof of said consent on public a blockchain. On the other hand, the data subject will be able to express his consent conveniently through his smartphone and evaluate the data controller’s performance. The regulator’s role was also contemplated, meaning that he can leverage certain system capabilities specifically designed to gauge the status of the relationships between data subjects and data controllers. © Springer Nature Switzerland AG 2020.

2019

Implications of Coding Layers on Physical-Layer Security: A Secrecy Benefit Approach

Authors
Harrison, WK; Beard, E; Dye, S; Holmes, E; Nelson, K; Gomes, MAC; Vilela, JP;

Publication
ENTROPY

Abstract
In this work, we consider the pros and cons of using various layers of keyless coding to achieve secure and reliable communication over the Gaussian wiretap channel. We define a new approach to information theoretic security, called practical secrecy and the secrecy benefit, to be used over real-world channels and finite blocklength instantiations of coding layers, and use this new approach to show the fundamental reliability and security implications of several coding mechanisms that have traditionally been used for physical-layer security. We perform a systematic/structured analysis of the effect of error-control coding, scrambling, interleaving, and coset coding, as coding layers of a secrecy system. Using this new approach, scrambling and interleaving are shown to be of no effect in increasing information theoretic security, even when measuring the effect at the output of the eavesdropper's decoder. Error control coding is shown to present a trade-off between secrecy and reliability that is dictated by the chosen code and the signal-to-noise ratios at the legitimate and eavesdropping receivers. Finally, the benefits of secrecy coding are highlighted, and it is shown how one can shape the secrecy benefit according to system specifications using combinations of different layers of coding to achieve both reliable and secure throughput.

2019

Generating a Binary Symmetric Channel for Wiretap Codes

Authors
Harrison, WK; Fernandes, T; Gomes, MAC; Vilela, JP;

Publication
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Abstract
In this paper, we fill a void between information theoretic security and practical coding over the Gaussian wiretap channel using a three-stage encoder/decoder technique. Security is measured using Kullback-Leibler divergence and resolvability techniques along with a limited number of practical assumptions regarding the eavesdropper's decoder. The results specify a general coding recipe for obtaining both secure and reliable communications over the Gaussian wiretap channel, and one specific set of concatenated codes is presented as a test case for the sake of providing simulation-based evaluation of security and reliability over the network. It is shown that there exists a threshold in signal-to-noise ratio (SNR) over a Gaussian channel, such that receivers experiencing SNR below the threshold have no practical hope of receiving information about the message when the three-stage coding technique is applied. Results further indicate that the two innermost encoding stages successfully approximate a binary symmetric channel, allowing the outermost encoding stage (e.g., a wiretap code) to focus solely on secrecy coding over this approximated channel.

  • 63
  • 202