2024
Authors
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;
Publication
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS
Abstract
In recent years, there has been a surge in the prevalence of high- and multidimensional temporal data across various scientific disciplines. These datasets are characterized by their vast size and challenging potential for analysis. Such data typically exhibit serial and cross-dependency and possess high dimensionality, thereby introducing additional complexities to conventional time series analysis methods. To address these challenges, a recent and complementary approach has emerged, known as network-based analysis methods for multivariate time series. In univariate settings, quantile graphs have been employed to capture temporal transition properties and reduce data dimensionality by mapping observations to a smaller set of sample quantiles. To confront the increasingly prominent issue of high dimensionality, we propose an extension of quantile graphs into a multivariate variant, which we term Multilayer Quantile Graphs. In this innovative mapping, each time series is transformed into a quantile graph, and inter-layer connections are established to link contemporaneous quantiles of pairwise series. This enables the analysis of dynamic transitions across multiple dimensions. In this study, we demonstrate the effectiveness of this new mapping using synthetic and benchmark multivariate time series datasets. We delve into the resulting network's topological structures, extract network features, and employ these features for original dataset analysis. Furthermore, we compare our results with a recent method from the literature. The resulting multilayer network offers a significant reduction in the dimensionality of the original data while capturing serial and cross-dimensional transitions. This approach facilitates the characterization and analysis of large multivariate time series datasets through network analysis techniques.
2024
Authors
Bauer, Y; Leal, JP; Queirós, R;
Publication
5th International Computer Programming Education Conference, ICPEC 2024, June 27-28, 2024, Lisbon, Portugal
Abstract
Generative AI presents both challenges and opportunities for educators. This paper explores its potential for automating the creation of programming exercises designed for automated assessment. Traditionally, creating these exercises is a time-intensive and error-prone task that involves developing exercise statements, solutions, and test cases. This ongoing research analyzes the capabilities of the OpenAI GPT API to automatically create these components. An experiment using the OpenAI GPT API to automatically create 120 programming exercises produced interesting results, such as the difficulties encountered in generating valid JSON formats and creating matching test cases for solution code. Learning from this experiment, an enhanced feature was developed to assist teachers in creating programming exercises and was integrated into Agni, a virtual learning environment (VLE). Despite the challenges in generating entirely correct programming exercises, this approach shows potential for reducing the time required to create exercises, thus significantly aiding teachers. The evaluation of this approach, comparing the efficiency and usefulness of using the OpenAI GPT API or authoring the exercises oneself, is in progress. © Yannik Bauer, José Paulo Leal, and Ricardo Queirós;
2024
Authors
Rodrigues, M; Leal, JP; Portela, F;
Publication
SLATE
Abstract
[No abstract available]
2024
Authors
dos Santos, AF; Leal, JP;
Publication
13th Symposium on Languages, Applications and Technologies, SLATE 2024, July 4-5, 2024, Águeda, Portugal
Abstract
2024
Authors
Filgueiras, A; Marques, ERB; Lopes, LMB; Marques, M; Silva, H;
Publication
CoRR
Abstract
2024
Authors
Moreno, P; Areias, M; Rocha, R; Costa, VS;
Publication
INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING
Abstract
Prolog systems rely on an atom table for symbol management, which is usually implemented as a dynamically resizeable hash table. This is ideal for single threaded execution, but can become a bottleneck in a multi-threaded scenario. In this work, we replace the original atom table implementation in the YAP Prolog system with a lock-free hash-based data structure, named Lock-free Hash Tries (LFHT), in order to provide efficient and scalable symbol management. Being lock-free, the new implementation also provides better guarantees, namely, immunity to priority inversion, to deadlocks and to livelocks. Performance results show that the new lock-free LFHT implementation has better results in single threaded execution and much better scalability than the original lock based dynamically resizing hash table.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.