2012
Authors
Choobdar, S; Ribeiro, P; Silva, F;
Publication
12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012)
Abstract
Unexpectedly frequent subgraphs, known as motifs, can help in characterizing the structure of complex networks. Most of the existing methods for finding motifs are designed for unweighted networks, where only the existence of connection between nodes is considered, and not their strength or capacity. However, in many real world networks, edges contain more information than just simple node connectivity. In this paper, we propose a new method to incorporate edge weight information in motif mining. We think of a motif as a subgraph that contains unexpected information, and we define a new significance measurement to assess this subgraph exceptionality. The proposed metric embeds the weight distribution in subgraphs and it is based on weight entropy. We use the g-trie data structure to find instances of k-sized subgraphs and to calculate its significance score. Following a statistical approach, the random entropy of subgraphs is then calculated, avoiding the time consuming step of random network generation. The discrimination power of the derived motif profile by the proposed method is assessed against the results of the traditional unweighted motifs through a graph classification problem. We use a set of labeled ego networks of co-authorship in the biology and mathematics fields. The new proposed method is shown to be feasible, achieving even slightly better accuracy. Since it does not require the generation of random networks, it is also computationally faster, and because we are able to use the weight information in computing the motif importance, we can avoid converting weighted networks into unweighted ones.
2012
Authors
Dutra, I; Rocha, R; Costa, VS; Silva, F; Santos, J;
Publication
2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS & PHD FORUM (IPDPSW)
Abstract
In this work we perform a detailed study of different or-scheduling strategies varying several parameters in two or-parallel systems, YapOr and ThOr, running on multi-core machines. Our results show that some kinds of applications are sensitive to the choice of scheduling strategy adopted. In particular, the choice of scheduling parameters mostly affect applications that have short execution times, which, despite having speedups, have their performance significantly affected. Our results also show that topmost dispatching can be more advantageous than bottommost dispatching, a finding that contradicts previous works in this area. One last finding is that YapOr and ThOr are affected differently by changes in scheduling with ThOr performing significantly better than YapOr in several applications.
2012
Authors
Choobdar, S; Ribeiro, P; Silva, F;
Publication
2012 FOURTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ASPECTS OF SOCIAL NETWORKS (CASON)
Abstract
This paper describes a methodology for finding and describing significant events in time evolving complex networks. We first group the nodes of the network in clusters, according to their similarity in terms of a set of local properties such as degree and clustering coefficient. We then monitor the behavior of these groups over time, looking for significant changes on the size of the groups. These events are notable since they show that the position of a number of nodes in the network has changed. We describe this evolution by extracting the correspondent transition patterns. We examined our methodology on three different real network datasets. Our experiments show that the discovered rules are significant and can describe the occurring events.
2012
Authors
Ribeiro, P; Silva, F; Lopes, L;
Publication
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING
Abstract
Many natural structures can be naturally represented by complex networks. Discovering network motifs, which are overrepresented patterns of inter-connections, is a computationally hard task related to graph isomorphism. Sequential methods are hindered by an exponential execution time growth when we increase the size of motifs and networks. In this article we study the opportunities for parallelism in existing methods and propose new parallel strategies that adapt and extend one of the most efficient serial methods known from the Fanmod tool. We propose both a master-worker strategy and one with distributed control, in which we employ a randomized receiver initiated methodology capable of providing dynamic load balancing during the whole computation process. Our strategies are capable of dealing both with exact and approximate network motif discovery. We implement and apply our algorithms to a set of representative networks and examine their scalability up to 128 processing cores. We obtain almost linear speedups, showcasing the efficiency of our proposed approach and are able to reach motif sizes that were not previously achievable using conventional serial algorithms.
2012
Authors
Leal, JP; Rodrigues, V; Queirós, R;
Publication
1st Symposium on Languages, Applications and Technologies, SLATE 2012, Braga, Portugal, June 21-22, 2012
Abstract
Extracting the semantic relatedness of terms is an important topic in several areas, including data mining, information retrieval and web recommendation. This paper presents an approach for computing the semantic relatedness of terms using the knowledge base of DBpedia - a community effort to extract structured information from Wikipedia. Several approaches to extract semantic relatedness from Wikipedia using bag-of-words vector models are already available in the literature. The research presented in this paper explores a novel approach using paths on an ontological graph extracted from DBpedia. It is based on an algorithm for finding and weighting a collection of paths connecting concept nodes. This algorithm was implemented on a tool called Shakti that extract relevant ontological data for a given domain from DBpedia using its SPARQL endpoint. To validate the proposed approach Shakti was used to recommend web pages on a Portuguese social site related to alternative music and the results of that experiment are reported in this paper.
2012
Authors
Verdu, E; Regueras, LM; Verdu, MJ; Leal, JP; de Castro, JP; Queiros, R;
Publication
COMPUTERS & EDUCATION
Abstract
Several Web-based on-line judges or on-line programming trainers have been developed in order to allow students to train their programming skills. However, their pedagogical functionalities in the learning of programming have not been clearly defined. EduJudge is a project which aims to integrate the "UVA On-line Judge", an existing on-line programming trainer with an important number of problems and users, into an effective educational environment consisting of the e-learning platform Moodie and the competitive learning tool QUESTOURnament. The result is the EduJudge system which allows teachers to apply different pedagogical approaches using a proven e-learning platform, makes problems easy to search through an effective search engine, and provides an automated evaluation of the solutions submitted to these problems. The final objective is to provide new learning strategies to motivate students and present programming as an easy and attractive challenge. EduJudge has been tried and tested in three algorithms and programming courses in three different Engineering degrees. The students' motivation and satisfaction levels were analysed alongside the effects of the EduJudge system on students' academic outcomes. Results indicate that both students and teachers found that among other multiple benefits the EduJudge system facilitates the learning process. Furthermore, the experiment also showed an improvement in students' academic outcomes. It must be noted that the students' level of satisfaction did not depend on their computer skills or their gender.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.