2021
Authors
Abuter, R; Amorim, A; Baubock, M; Berger, JP; Bonnet, H; Brandner, W; Clenet, Y; Dallilar, Y; Davies, R; de Zeeuw, PT; Dexter, J; Drescher, A; Eisenhauer, F; Schreiber, NMF; Garcia, P; Gao, F; Gendron, E; Genzel, R; Gillessen, S; Habibi, M; Haubois, X; Heissel, G; Henning, T; Hippler, S; Horrobin, M; Jimenez Rosales, A; Jochum, L; Jocou, L; Kaufer, A; Kervella, P; Lacour, S; Lapeyrere, V; Le Bouquin, JB; Lena, P; Lutz, D; Nowak, M; Ott, T; Paumard, T; Perraut, K; Perrin, G; Pfuhl, O; Rabien, S; Rodriguez Coira, G; Shangguan, J; Shimizu, T; Scheithauer, S; Stadler, J; Straub, O; Straubmeier, C; Sturm, E; Tacconi, LJ; Vincent, F; von Fellenberg, S; Waisberg, I; Widmann, F; Wieprecht, E; Wiezorrek, E; Woillez, J; Yazici, S; Zins, G;
Publication
ASTRONOMY & ASTROPHYSICS
Abstract
The spin of the supermassive black hole that resides at the Galactic Center can, in principle, be measured by accurate measurements of the orbits of stars that are much closer to Sgr A* than S2, the orbit of which recently provided the measurement of the gravitational redshift and the Schwarzschild precession. The GRAVITY near-infrared interferometric instrument combining the four 8m telescopes of the VLT provides a spatial resolution of 2-4 mas, breaking the confusion barrier for adaptive-optics-assisted imaging with a single 8-10m telescope. We used GRAVITY to observe Sgr A* over a period of six months in 2019 and employed interferometric reconstruction methods developed in radio astronomy to search for faint objects near Sgr A*. This revealed a slowly moving star of magnitude 18.9 in the K-band within 30 mas of Sgr A*. The position and proper motion of the star are consistent with the previously known star S62, which is at a substantially greater physical distance, but in projection passes close to Sgr A*. Observations in August and September 2019 detected S29 easily, with K-magnitude of 16.6, at approximately 130 mas from Sgr A*. The planned upgrades of GRAVITY, and further improvements in the calibration, offer greater chances of finding stars fainter than K-magnitude of 19.
2021
Authors
Perraut, K; Labadie, L; Bouvier, J; Menard, F; Klarmann, L; Dougados, C; Benisty, M; Berger, JP; Bouarour, YI; Brandner, W; Garatti, ACO; Caselli, P; de Zeeuw, PT; Garcia Lopez, R; Henning, T; Sanchez Bermudez, J; Sousa, A; van Dishoeck, E; Alecian, E; Amorim, A; Clenet, Y; Davies, R; Drescher, A; Duvert, G; Eckart, A; Eisenhauer, F; Forster Schreiber, NM; Garcia, P; Gendron, E; Genzel, R; Gillessen, S; Grellmann, R; Heissel, G; Hippler, S; Horrobin, M; Hubert, Z; Jocou, L; Kervella, P; Lacour, S; Lapeyrere, V; Le Bouquin, JB; Lena, P; Lutz, D; Ott, T; Paumard, T; Perrin, G; Scheithauer, S; Shangguan, J; Shimizu, T; Stadler, J; Straub, O; Straubmeier, C; Sturm, E; Tacconi, L; Vincent, F; von Fellenberg, S; Widmann, F;
Publication
ASTRONOMY & ASTROPHYSICS
Abstract
Context. T Tauri stars are surrounded by dust and gas disks. As material reservoirs from which matter is accreted onto the central star and planets are built, these protoplanetary disks play a central role in star and planet formation. Aims. We aim at spatially resolving at sub-astronomical unit (sub-au) scales the innermost regions of the protoplanetary disks around a sample of T Tauri stars to better understand their morphology and composition. Methods. Thanks to the sensitivity and the better spatial frequency coverage of the GRAVITY instrument of the Very Large Telescope Interferometer, we extended our homogeneous data set of 27 Herbig stars and collected near-infrared K-band interferometric observations of 17 T Tauri stars, spanning effective temperatures and luminosities in the ranges of similar to 4000-6000 K and similar to 0.4-10 L-circle dot, respectively. We focus on the continuum emission and develop semi-physical geometrical models to fit the interferometric data and search for trends between the properties of the disk and the central star. Results. As for those of their more massive counterparts, the Herbig Ae/Be stars, the best-fit models of the inner rim of the T Tauri disks correspond to wide rings. The GRAVITY measurements extend the radius-luminosity relation toward the smallest luminosities (0.4-10 L-circle dot). As observed previously, in this range of luminosities, the R proportional to L-1/2 trend line is no longer valid, and the K-band sizes measured with GRAVITY appear to be larger than the predicted sizes derived from sublimation radius computation. We do not see a clear correlation between the K-band half-flux radius and the mass accretion rate onto the central star. Besides, having magnetic truncation radii in agreement with the K-band GRAVITY sizes would require magnetic fields as strong as a few kG, which should have been detected, suggesting that accretion is not the main process governing the location of the half-flux radius of the inner dusty disk. The GRAVITY measurements agree with models that take into account the scattered light, which could be as important as thermal emission in the K band for these cool stars. The N-to-K band size ratio may be a proxy for disentangling disks with silicate features in emission from disks with weak and/or in absorption silicate features (i.e., disks with depleted inner regions and/or with large gaps). The GRAVITY data also provide inclinations and position angles of the inner disks. When compared to those of the outer disks derived from ALMA images of nine objects of our sample, we detect clear misalignments between both disks for four objects. Conclusions. The combination of improved data quality with a significant and homogeneous sample of young stellar objects allows us to revisit the pioneering works done on the protoplanetary disks by K-band interferometry and to test inner disk physics such as the inner rim morphology and location.
2021
Authors
Amorim, A; Baubock, M; Brandner, W; Bolzer, M; Clenet, Y; Davies, R; de Zeeuw, PT; Dexter, J; Drescher, A; Eckart, A; Eisenhauer, F; Schreiber, NMF; Gao, F; Garcia, PJV; Genzel, R; Gillessen, S; Gratadour, D; Honig, S; Kaltenbrunner, D; Kishimoto, M; Lacour, S; Lutz, D; Millour, F; Netzer, H; Ott, T; Paumard, T; Perraut, K; Perrin, G; Peterson, BM; Petrucci, PO; Pfuhl, O; Prieto, MA; Rouan, D; Sanchez Bermudez, J; Shangguan, J; Shimizu, T; Schartmann, M; Stadler, J; Sternberg, A; Straub, O; Straubmeier, C; Sturm, E; Tacconi, LJ; Tristram, KRW; Vermot, P; von Fellenberg, S; Waisberg, I; Widmann, F; Woillez, J;
Publication
ASTRONOMY & ASTROPHYSICS
Abstract
Using VLTI/GRAVITY and SINFONI data, we investigate the subparsec gas and dust structure around the nearby type 1 active galactic nucleus (AGN) hosted by NGC 3783. The K-band coverage of GRAVITY uniquely allows simultaneous analysis of the size and kinematics of the broad line region (BLR), the size and structure of the near-infrared(near-IR)-continuum-emitting hot dust, and the size of the coronal line region (CLR). We find the BLR, probed through broad Br gamma emission, to be well described by a rotating, thick disc with a radial distribution of clouds peaking in the inner region. In our BLR model, the physical mean radius of 16 light-days is nearly twice the ten-day time-lag that would be measured, which closely matches the ten-day time-lag that has been measured by reverberation mapping. We measure a hot dust full-width at half-maximum (FWHM) size of 0.74 mas (0.14 pc) and further reconstruct an image of the hot dust, which reveals a faint (5% of the total flux) offset cloud that we interpret as an accreting or outflowing cloud heated by the central AGN. Finally, we directly measure the FWHM size of the nuclear CLR as traced by the [Ca VIII] and narrow Br gamma line. We find a FWHM size of 2.2 mas (0.4 pc), fully in line with the expectation of the CLR located between the BLR and narrow line region. Combining all of these measurements together with larger scale near-IR integral field unit and mid-IR interferometry data, we are able to comprehensively map the structure and dynamics of gas and dust from 0.01 to 100 pc.
2021
Authors
Koutoulaki, M; Lopez, RG; Natta, A; Fedriani, R; Garatti, ACO; Ray, TP; Coffey, D; Brandner, W; Dougados, C; Garcia, PJV; Klarmann, L; Labadie, L; Perraut, K; Sanchez Bermudez, J; Lin, CC; Amorim, A; Baubock, M; Benisty, M; Berger, JP; Buron, A; Caselli, P; Clenet, Y; du Foresto, VC; de Zeeuw, PT; Duvert, G; de Wit, W; Eckart, A; Eisenhauer, F; Filho, M; Gao, F; Gendron, E; Genzel, R; Gillessen, S; Grellmann, R; Habibi, M; Haubois, X; Haussmann, F; Henning, T; Hippler, S; Hubert, Z; Horrobin, M; Rosales, AJ; Jocou, L; Kervella, P; Kolb, J; Lacour, S; Le Bouquin, JB; Lena, P; Linz, H; Ott, T; Paumard, T; Perrin, G; Pfuhl, O; Ramirez Tannus, MC; Rau, C; Rousset, G; Scheithauer, S; Shangguan, J; Stadler, J; Straub, O; Straubmeier, C; Sturm, E; van Dishoeck, E; Vincent, F; von Fellenberg, S; Widmann, F; Wieprecht, E; Wiest, M; Wiezorrek, E; Yazici, S; Zins, G;
Publication
ASTRONOMY & ASTROPHYSICS
Abstract
Context. 51 Oph is a Herbig Ae/Be star that exhibits strong near-infrared CO ro-vibrational emission at 2.3 mu m, most likely originating in the innermost regions of a circumstellar disc.Aims. We aim to obtain the physical and geometrical properties of the system by spatially resolving the circumstellar environment of the inner gaseous disc.Methods. We used the second-generation Very Large Telescope Interferometer instrument GRAVITY to spatially resolve the continuum and the CO overtone emission. We obtained data over 12 baselines with the auxiliary telescopes and derive visibilities, and the differential and closure phases as a function of wavelength. We used a simple local thermal equilibrium ring model of the CO emission to reproduce the spectrum and CO line displacements.Results. Our interferometric data show that the star is marginally resolved at our spatial resolution, with a radius of similar to 10.58 2.65R(circle dot). The K-band continuum emission from the disc is inclined by 63 degrees +/- 1 degrees, with a position angle of 116 degrees +/- 1 degrees, and 4 +/- 0.8 mas (0.5 +/- 0.1 au) across. The visibilities increase within the CO line emission, indicating that the CO is emitted within the dust-sublimation radius. By modelling the CO bandhead spectrum, we derive that the CO is emitted from a hot (T = 1900-2800 K) and dense (N-CO = (0.9-9) x 10(21) cm(-2)) gas. The analysis of the CO line displacement with respect to the continuum allows us to infer that the CO is emitted from a region 0.10 +/- 0.02 au across, well within the dust-sublimation radius. The inclination and position angle of the CO line emitting region is consistent with that of the dusty disc.Conclusions. Our spatially resolved interferometric observations confirm the CO ro-vibrational emission within the dust-free region of the inner disc. Conventional disc models exclude the presence of CO in the dust-depleted regions of Herbig AeBe stars. Ad hoc models of the innermost disc regions, that can compute the properties of the dust-free inner disc, are therefore required.
2019
Authors
Perraut, K; Labadie, L; Lazareff, B; Klarmann, L; Segura Cox, D; Benisty, M; Bouvier, J; Brandner, W; Garatti, ACO; Caselli, P; Dougados, C; Garcia, P; Garcia Lopez, R; Kendrew, S; Koutoulaki, M; Kervella, P; Lin, CC; Pineda, J; Sanchez Bermudez, J; van Dishoeck, E; Abuter, R; Amorim, A; Berger, JP; Bonnet, H; Buron, A; Cantalloube, F; Clenet, Y; du Foresto, VC; Dexter, J; de Zeeuw, PT; Duvert, G; Eckart, A; Eisenhauer, F; Eupen, F; Gao, F; Gendron, E; Genzel, R; Gillessen, S; Gordo, P; Grellmann, R; Haubois, X; Haussmann, F; Henning, T; Hippler, S; Horrobin, M; Hubert, Z; Jocou, L; Lacour, S; Le Bouquin, JB; Lena, P; Merand, A; Ott, T; Paumard, T; Perrin, G; Pfuhl, O; Rabien, S; Ray, T; Rau, C; Rousset, G; Scheithauer, S; Straub, O; Straubmeier, C; Sturm, E; Vincent, F; Waisberg, I; Wank, I; Widmann, F; Wieprecht, E; Wiest, M; Wiezorrek, E; Woillez, J; Yazici, S;
Publication
ASTRONOMY & ASTROPHYSICS
Abstract
Context. The formation and the evolution of protoplanetary disks are important stages in the lifetime of stars. Terrestrial planets form or migrate within the innermost regions of these protoplanetary disks and so, the processes of disk evolution and planet formation are intrinsically linked. Studies of the dust distribution, composition, and evolution of these regions are crucial to understanding planet formation. Aims. We built a homogeneous observational dataset of Herbig Ae/Be disks with the aim of spatially resolving the sub au-scale region to gain a statistical understanding of their morphological and compositional properties, in addition to looking for correlations with stellar parameters, such as luminosity, mass, and age. Methods. We observed 27 Herbig Ae/Be stars with the GRAVITY instrument installed at the combined focus of the Very Large Telescope Interferometer (VLTI) and operating in the near-infrared K-band, focused on the K-band thermal continuum, which corresponds to stellar flux reprocessed by the dust grains. Our sample covers a large range of effective temperatures, luminosities, masses, and ages for the intermediate-mass star population. The circumstellar disks in our sample also cover a range of various properties in terms of reprocessed flux, flared or flat morphology, and gaps. We developed semi-physical geometrical models to fit our interferometric data. Results. Our best-fit models correspond to smooth and wide rings that support previous findings in the H-band, implying that wedgeshaped rims at the dust sublimation edge are favored. The measured closure phases are generally non-null with a median value of similar to 10 degrees, indicating spatial asymmetries of the intensity distributions. Multi-size grain populations could explain the closure phase ranges below 20-25 degrees but other scenarios should be invoked to explain the largest ones. Our measurements extend the Radius-Luminosity relation to similar to 10(4) L-circle dot luminosity values and confirm the significant spread around the mean relation observed by PIONIER in the H-band. Gapped sources exhibit a large N-to-K band size ratio and large values of this ratio are only observed for the members of our sample that would be older than 1 Ma, less massive, and with lower luminosity. In the mass range of 2 M-circle dot, we do observe a correlation in the increase of the relative age with the transition from group II to group I, and an increase of the N-to-K size ratio. However, the size of the current sample does not yet permit us to invoke a clear, universal evolution mechanism across the Herbig Ae/Be mass range. The measured locations of the K-band emission in our sample suggest that these disks might be structured by forming young planets, rather than by depletion due to EUV, FUV, and X-ray photo-evaporation.
2020
Authors
Bouarour, YI; Perraut, K; Menard, F; Brandner, W; Garatti, ACO; Caselli, P; van Dishoeck, E; Dougados, C; Garcia Lopez, R; Grellmann, R; Henning, T; Klarmann, L; Labadie, L; Natta, A; Sanchez Bermudez, J; Thi, WF; de Zeeuw, PT; Amorim, A; Baubock, M; Benisty, M; Berger, JP; Clenet, Y; du Foresto, VC; Duvert, G; Eckart, A; Eisenhauer, F; Eupen, F; Filho, M; Gao, F; Garcia, P; Gendron, E; Genzel, R; Gillessen, S; Jimenez Rosales, A; Jocou, L; Hippler, S; Horrobin, M; Hubert, Z; Kervella, P; Lacour, S; Le Bouquin, JB; Lena, P; Ott, T; Paumard, T; Perrin, G; Pfuhl, O; Rousset, G; Scheithauer, S; Shangguan, J; Stadler, J; Straub, O; Straubmeier, C; Sturm, E; Vincent, FH; von Fellenberg, SD; Widmann, F; Wiest, M;
Publication
ASTRONOMY & ASTROPHYSICS
Abstract
Context. Studies of the dust distribution, composition, and evolution of protoplanetary disks provide clues for understanding planet formation. However, little is known about the innermost regions of disks where telluric planets are expected to form.Aims. We aim constrain the geometry of the inner disk of the T Tauri star RY Lup by combining spectro-photometric data and interferometric observations in the near-infrared (NIR) collected at the Very Large Telescope Interferometer. We use PIONIER data from the ESO archive and GRAVITY data that were obtained in June 2017 with the four 8m telescopes.Methods. We use a parametric disk model and the 3D radiative transfer code MCFOST to reproduce the spectral energy distribution (SED) and match the interferometric observations. MCFOST produces synthetic SEDs and intensity maps at different wavelengths from which we compute the modeled interferometric visibilities and closure phases through Fourier transform.Results. To match the SED from the blue to the millimetric range, our model requires a stellar luminosity of 2.5 L-circle dot, higher than any previously determined values. Such a high value is needed to accommodate the circumstellar extinction caused by the highly inclined disk, which has been neglected in previous studies. While using an effective temperature of 4800 K determined through high-resolution spectroscopy, we derive a stellar radius of 2.29 R-circle dot. These revised fundamental parameters, when combined with the mass estimates available (in the range 1.3-1.5 M-circle dot), lead to an age of 0.5-2.0 Ma for RY Lup, in better agreement with the age of the Lupus association than previous determinations. Our disk model (that has a transition disk geometry) nicely reproduces the interferometric GRAVITY data and is in good agreement with the PIONIER ones. We derive an inner rim location at 0.12 au from the central star. This model corresponds to an inclination of the inner disk of 50 degrees, which is in mild tension with previous determinations of a more inclined outer disk from SPHERE (70 degrees in NIR) and ALMA (67 5 degrees) images, but consistent with the inclination determination from the ALMA CO spectra (55 +/- 5 degrees). Increasing the inclination of the inner disk to 70 degrees leads to a higher line-of-sight extinction and therefore requires a higher stellar luminosity of 4.65 L-circle dot to match the observed flux levels. This luminosity would translate to a stellar radius of 3.13 R-circle dot, leading to an age of 2-3 Ma, and a stellarmass of about 2 M-circle dot, in disagreement with the observed dynamical mass estimate of 1.3-1.5 M-circle dot. Critically, this high-inclination inner disk model also fails to reproduce the visibilities observed with GRAVITY.Conclusions. The inner dust disk, as traced by the GRAVITY data, is located at a radius in agreement with the dust sublimation radius. An ambiguity remains regarding the respective orientations of the inner and outer disk, coplanar and mildly misaligned, respectively.As our datasets are not contemporary and the star is strongly variable, a deeper investigation will require a dedicated multi-technique observing campaign.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.