2023
Authors
Duarte, M; Pereira-Rodrigues, P; Ferreira-Santos, D;
Publication
Abstract Clinical digital tools are an up-and-coming new technology that can be used in the screening or diagnosis of obstructive sleep apnea (OSA) patients, notwithstanding the crucial role of polysomnography (PSG) – the gold standard. The aim of our study was to identify, gather, and analyze existing digital tools and smartphone-based health platforms that are being used for this disease’s screening or diagnosis in the adult population. We performed a comprehensive literature search in MEDLINE, Scopus, and Web of Science databases for studies evaluating the validity of digital tools in OSA screening or diagnosis until November 2022. The risk of bias was assessed using JBI Critical Appraisal Tool for Diagnostic Test Accuracy Studies. Sensitivity, specificity, and area under the receiver-operating curve (AUC) were used as discrimination measures. We retrieved 1714 articles, 41 of which were included. We found 7 smartphone-based tools, 10 wearables, 11 bed/mattress sensors, 5 nasal airflow devices, and 8 other sensors that did not fit the previous categories. Only 8 (20%) studies performed external validation of their developed tool. Of those, the highest reported values for AUC, sensitivity, and specificity were 0.99, 96%, and 92%, respectively, for a clinical cutoff of apnea-hypopnea index (AHI) = 30 and correspond to a non-contact audio recorder that records sleep sounds, which are then analyzed by a deep learning technique that automatically detects sleep apnea events, calculates the AHI, and identifies OSA. Looking at the studies that only internally validated their models, the work that reported the highest accuracy measures showed AUC, sensitivity, and specificity values of 1.00, 100%, and 96%, respectively, for a clinical cutoff AHI = 30. It uses the Sonomat – a foam mattress that, aside from recording breath sounds, has pressure sensors that generate voltage when deformed, thus detecting respiratory movements, and using it to classify OSA events. These clinical tools presented promising results, showing high discrimination measures (best results reaching AUC > 0.99). However, there is still a need for quality studies, comparing the developed tools with the gold standard and validating them in external populations and other environments before they can be used in a clinical setting. This systematic review was registered in PROSPERO under reference CRD42023387748.
2020
Authors
Amorim, P; Ferreira Santos, D; Drummond, M; Rodrigues, PP;
Publication
EUROPEAN RESPIRATORY JOURNAL
Abstract
2024
Authors
Camacho, KMC; Gomez-Pilar, J; Pereira-Rodrigues, P; Ferreira-Santos, D; Durante, CB; Albi, TR; Alvarez, DG; Gozal, D; Gutiérrez-Tobal, GC; Hornero, R; Del Campo, F;
Publication
EUROPEAN RESPIRATORY JOURNAL
Abstract
2024
Authors
Amorim, P; Ferreira-Santos, D; Drummond, M; Rodrigues, PP;
Publication
DIAGNOSTICS
Abstract
Background/Objectives: Obstructive sleep apnea (OSA) classification relies on polysomnography (PSG) results. Current guidelines recommend the development of clinical prediction algorithms in screening prior to PSG. A recent intuitive and user-friendly tool (OSABayes), based on a Bayesian network model using six clinical variables, has been proposed to quantify the probability of OSA. Our aims are (1) to validate OSABayes prospectively, (2) to build a smartphone app based on the proposed model, and (3) to evaluate app usability. Methods: We prospectively included adult patients suspected of OSA, without suspicion of other sleep disorders, who underwent level I or III diagnostic PSG. Apnea-hypopnea index (AHI) and OSABayes probabilities were obtained and compared using the area under the ROC curve (AUC [95%CI]) for OSA diagnosis (AHI >= 5/h) and higher severity levels (AHI >= 15/h) prediction. We built the OSABayes app on 'App Inventor 2', and the usability was assessed with a cognitive walkthrough method and a general evaluation. Results: 216 subjects were included in the validation cohort, performing PSG levels I (34%) and III (66%). OSABayes presented an AUC of 83.6% [77.3-90.0%] for OSA diagnosis and 76.3% [69.9-82.7%] for moderate/severe OSA prediction, showing good response for both types of PSG. The OSABayes smartphone application allows one to calculate the probability of having OSA and consult information about OSA and the tool. In the usability evaluation, 96% of the proposed tasks were carried out. Conclusions: These results show the good discrimination power of OSABayes and validate its applicability in identifying patients with a high pre-test probability of OSA. The tool is available as an online form and as a smartphone app, allowing a quick and accessible calculation of OSA probability.
2025
Authors
Ghorvei, M; Karhu, T; Hietakoste, S; Ferreira Santos, D; Hrubos Strom, H; Islind, AS; Biedebach, L; Nikkonen, S; Leppaenen, T; Rusanen, M;
Publication
JOURNAL OF SLEEP RESEARCH
Abstract
Obstructive sleep apnea is a heterogeneous sleep disorder with varying phenotypes. Several studies have already performed cluster analyses to discover various obstructive sleep apnea phenotypic clusters. However, the selection of the clustering method might affect the outputs. Consequently, it is unclear whether similar obstructive sleep apnea clusters can be reproduced using different clustering methods. In this study, we applied four well-known clustering methods: Agglomerative Hierarchical Clustering; K-means; Fuzzy C-means; and Gaussian Mixture Model to a population of 865 suspected obstructive sleep apnea patients. By creating five clusters with each method, we examined the effect of clustering methods on forming obstructive sleep apnea clusters and the differences in their physiological characteristics. We utilized a visualization technique to indicate the cluster formations, Cohen's kappa statistics to find the similarity and agreement between clustering methods, and performance evaluation to compare the clustering performance. As a result, two out of five clusters were distinctly different with all four methods, while three other clusters exhibited overlapping features across all methods. In terms of agreement, Fuzzy C-means and K-means had the strongest (kappa = 0.87), and Agglomerative hierarchical clustering and Gaussian Mixture Model had the weakest agreement (kappa = 0.51) between each other. The K-means showed the best clustering performance, followed by the Fuzzy C-means in most evaluation criteria. Moreover, Fuzzy C-means showed the greatest potential in handling overlapping clusters compared with other methods. In conclusion, we revealed a direct impact of clustering method selection on the formation and physiological characteristics of obstructive sleep apnea clusters. In addition, we highlighted the capability of soft clustering methods, particularly Fuzzy C-means, in the application of obstructive sleep apnea phenotyping.
2024
Authors
Amorim, P; Ferreira-Santos, D; Drummond, M; Rodrigues, PP;
Publication
SLEEP MEDICINE
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.