2021
Authors
Santos, SF; Gough, M; Pinto, JPGV; Osorio, GJ; Javadi, M; Catalao, JPS;
Publication
2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE)
Abstract
The increasing penetration of renewable energy sources in areas with wholesale energy markets may have significant impacts on the prices of electricity within these markets. These renewable energy sources typically have low or zero marginal prices and thus can bid into energy markets at prices which might be below plants using other generating technologies. This work seeks to understand the impact of these zero marginal cost plants in the Iberian Energy Market. This work makes use of an Artificial Neural Network (ANN) to evaluate the impact of growing renewable energy generation on the market-clearing price. Real data from the Iberian Energy Market is chosen and used to train the ANN. The scenarios used for renewable energy generation are taken from the newly published national energy and climate plans for both Spain and Portugal. Results show that increasing penetration of renewable energy leads to significant reductions in the forecasted energy price, showing a price decrease of about 23 (sic)/MWh in 2030 compared to the baseline. Increasing solar PV generation has the largest effect on market prices.
2021
Authors
MansourLakouraj, M; Shams, MH; Niaz, H; Liu, JJ; Javadi, MS; Catalao, JPS;
Publication
2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE)
Abstract
Hydrogen vehicle stations (HVSs) that convert electricity into hydrogen have appeared as a new arrival asset to the power system with the raising interest in hydrogen vehicles (HVs). In order to safely power these new assets, microgrids, including different flexible resources, are an ideal option. This paper presents an efficient MG scheduling in the presence of HVSs, renewable energy resources, energy storage systems (ESS) and demand response. This model also takes the uncertainties associated with electrical loads, renewables, and HVs into consideration. In order to create an MILP problem, linearized AC optimal power flow equations are considered. A 21-bus MG is examined by applying the proposed model to various case studies, thereby proving that the MG schedule meets the demand of HVs and electrical load. Employing DR programs can reduce operation costs and reduce the load during peak usage hours. Furthermore, the physical constraints of the network satisfy the security in operation. Finally, numerical analysis illustrates the effectiveness of the proposed method.
2021
Authors
Romero, JGY; Home Ortiz, JM; Javadi, MS; Gough, M; Mantovani, JRS; Catalao, JPS;
Publication
2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE)
Abstract
The problem of reconfiguration for active distribution systems is formulated as a stochastic mixed-integer second-order conic programming (MISOCP) model that simultaneously considers the minimization of energy power losses and CO2 emissions. The solution of the model determines the optimal radial topology, the operation of switchable capacitor banks, and the operation of dispatchable and non - dispatchable distributed generators. A stochastic scenario-based model is considered to handle uncertainties in load behavior, solar irradiation, and energy prices. The optimal solution of this model can be reached with a commercial solver; however, this is not computationally efficient. To tackle this issue a novel methodology which explores the efficiency of classical optimization techniques and heuristic based on neighborhood structures, referred as matheuristic algorithm is proposed. In this algorithm. the neighborhood search is carried out using the solution of reduced MISOCP models that are obtained from the original formulation of the problem. Numerical experiments are performed using several systems to compare the performance of the proposed matheuristic against the direct solution by the commercial solver CPLEX. Results demonstrate the superiority of the proposed methodology solving the problem for large-scale systems.
2021
Authors
Afrasiabi, S; Afrasiabi, M; Behdani, B; Mohammadi, M; Javadi, MS; Osorio, GJ; Catalao, JPS;
Publication
2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE)
Abstract
Photovoltaic (PV) as one of the most promising energy alternatives brings a set of serious challenges in the operation of the power systems including PV system protection. Accordingly, it has become even more vital to provide reliable protection for the PV generations. To this end, this paper proposes two-stage data-driven methods. In the first stage, a feature selection method, namely t-distributed stochastic neighbor embedding (t-SNE) is implemented to select the optimal features. Then, the output of t-SNE is directly fed into the strong data-driven classification algorithm, namely robust soft learning vector quantization (RSLVQ) to detect PV array fault and identify the fault types in the second stage. The proposed method is able to detect the two different line-to-line faults (in strings and out of strings) and open circuit fault and fault type considering partial shedding effects. The results have been discussed based on simulation results and have been demonstrated the high accuracy and reliability of the proposed two-stage method in detection and fault type identification based on confusion matrix values.
2021
Authors
Mansouri, SA; Nematbakhsh, E; Javadi, MS; Jordehi, AR; Shafie-khah, M; Catalao, JPS;
Publication
2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE)
Abstract
This paper presents a dynamic model to improve the resilience of the distribution network during contingent events. In this model, when an event occurs, the system operator maximizes power supply by changing the network topology as well as utilizing the direct load control (DLC) program. The model is implemented on a modified IEEE 69-bus distribution system and includes three types of residential, commercial and industrial loads. First, numerous scenarios are generated based on weather forecasting, and then the problem is solved for high-probability scenarios. It is noteworthy that industrial loads are considered as vital loads and the priority of load supply is for industrial, residential and commercial loads, respectively. The final problem is formulated as mixed-integer linear programming (MILP) problem and solved by CPLEX solver in GAMS software. The effect of dynamic topology on load supply has been investigated. In addition, the impact of using the DLC program and electrical energy storage systems (EES) systems on load supply been studied in detail.
2021
Authors
Santos Gonzalez, EE; Gutierrez Alcaraz, G; Nezhad, AE; Javadi, MS; Osorio, GJ; Catalao, JPS;
Publication
2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE)
Abstract
In this paper, a stochastic optimization model is developed for optimal operation of the active distribution networks. The proposed model is investigated on the transactive energy market in the presence of active consumers, local photovoltaic power generations and storage devices. The stochastic behavior of photovoltaic panel power generation units and load consumptions have been modeled using scenario generations and scenario reduction technique. Besides, the stochastic nature of the demand power as well as rooftop photovoltaic panels have been investigated in this paper. In the transactive energy market model, the distribution system operator is the main responsible for the market-clearing mechanisms and controlling the net power exchange between the distribution network and upstream grid. The proposed model is tested and verified on a radial medium voltage distribution network with 16 buses.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.