2022
Authors
Faria, MT; Rodrigues, S; Campelo, M; Dias, D; Rego, R; Rocha, H; Sa, F; Tavares Silva, M; Pinto, R; Pestana, G; Oliveira, A; Pereira, J; Cunha, JPS; Rocha Goncalves, F; Goncalves, H; Martins, E;
Publication
EPILEPSY & BEHAVIOR
Abstract
Objective: Heart rate variability (HRV), an index of the autonomic cardiac activity, is decreased in patients with epilepsy, and a low HRV is associated with a higher risk of sudden death. Generalized tonic-clonic seizures are one of the most consistent risk factors for SUDEP, but the influence (and relative risk) of each type of seizure on cardiac function is still unknown. Our objective was to assess the impact of the type of seizure (focal to bilateral tonic-clonic seizure - FBTCS - versus non-FBTCS) on periictal HRV, in a group of patients with refractory epilepsy and both types of seizures. Methods: We performed a 48-hour Holter recording on 121 patients consecutively admitted to our Epilepsy Monitoring Unit. We only included patients with both FBTCS and non-FBTCS on the Holter recording and selected the first seizure of each type to analyze. To evaluate HRV parameters (AVNN, SDNN, RMSSD, pNN20, LF, HF, and LF/HF), we chose 5-min epochs pre-and postictally. Results: We included 14 patients, with a median age of 36 (min-max, 16-55) years and 64% were female. Thirty-six percent had cardiovascular risk factors, but no previously known cardiac disease. In the preictal period, there were no statistically significant differences in HRV parameters, between FBTCS and non-FBTCS. In the postictal period, AVNN, RMSSD, pNN20, LF, and HF were significantly lower, and LF/HF and HR were significantly higher in FBTCS. From preictal to postictal periods, FBTCS elicited a statistically significant rise in HR and LF/HF, and a statistically significant fall in AVNN, RMSSD, pNN20, and HF. Non-FBTCS only caused statistically significant changes in HR (decrease) and AVNN (increase). Significance/conclusion: This work emphasizes the greater effect of FBTCS in autonomic cardiac function in patients with refractory epilepsy, compared to other types of seizures, with a significant reduction in vagal tonus, which may be associated with an increased risk of SUDEP.
2022
Authors
Silva, I; Pedras, S; Oliveira, R; Veiga, C; Paredes, H;
Publication
TRIALS
Abstract
Background: Physical exercise is a first-line treatment for peripheral arterial disease (PAD) and intermittent claudication (IC) reducing pain and increasing the distances walked. Home-based exercise therapy (HBET) has the advantage of reaching a higher number of patients and increasing adherence to physical exercise as it is performed in the patient's residential area and does not have the time, cost, and access restrictions of supervised exercise therapy (SET) implemented in a clinical setting. Even so, rates of adherence to physical exercise are relatively low, and therefore, m-health tools are promising in increasing motivation to behavior change and adherence to physical exercise. A built-in virtual assistant is a patient-focused tool available in a mobile interface, providing a variety of functions including health education, motivation, and implementation of behavior change techniques. Methods: This is a single-center, prospective, three-arm, single-blind, randomized, controlled, superior clinical trial with stratified and blocked random allocation. Three hundred participants with PAD and IC will be recruited from an Angiology and Vascular Surgery Department, Centro Hospitalar Universitario Porto (CHUPorto), Porto, Portugal. All patients will receive the same medical care recommended by current guidelines. Participants in all three groups will receive a personalized prescription for an HBET program and a behavioral change and motivational intervention. Participants in experimental groups 1 and 2 will receive a smartphone with the WalkingPad app to monitor exercise sessions. Experimental group 2 WalkingPad app will have a built-in virtual assistant that will promote behavioral change and provide motivational support. Participants allocated to the active control group will not receive the m-health tool, but a practice diary to encourage monitoring. The program will last for 6 months with three evaluation moments (baseline, 3, and 6 months). The primary outcome will be the change in distances walked (maximal and pain-free) from baseline to 3 and 6 months. Secondary outcomes will be changes in quality of life, patients' perception of resistance, and walking speed. Discussion: This study will allow measuring the effectiveness of an m-health tool in increasing motivation for behavior change and adherence to an HBET program in patients with PAD. The superiority of experimental group 2 in the primary and secondary outcomes will indicate that the virtual assistant is effective for motivating behavioral change and encouraging the practice and adherence to physical exercise. The use of m-health tools and virtual health assistants can potentially fill a gap in the access and quality of health services and information, reducing the burden on the health system and promoting self-management and self-care in chronic illness.
2022
Authors
Costa, A; Rodrigues, D; Castro, M; Assis, S; Oliveira, HP;
Publication
DISPLAYS
Abstract
Lower limb amputation is a condition affecting millions of people worldwide. Patients are often prescribed with lower limb prostheses to aid their mobility, but these prostheses require frequent adjustments through an iterative and manual process, which heavily depends on patient feedback and on the prosthetist's experience. New computer-aided design and manufacturing technologies have been emerging as ways to improve the fitting process by creating virtual models of the prosthesis' interface component with the limb, the socket. Using Adversarial Autoencoders, a generative model describing both transtibial and transfemoral sockets was created. Two strategies were tested to counteract the small size of the dataset: transfer learning using the ModelNet dataset and data augmentation through a previously validated socket statistical shape model. The minimum reconstruction error was 0.00124 mm and was obtained for the model which combined the two approaches. A single-blind assessment conducted with prosthetists showed that, while generated and real shapes are distinguishable, most generated ones assume plausible shapes. Our results show that the use of transfer learning allowed for a correct training and regularization of the latent space, inducing in the model generative abilities with potential clinical applications.
2022
Authors
Costa, T; Coelho, L; Silva, MF;
Publication
Advances in Medical Technologies and Clinical Practice
Abstract
2022
Authors
Amarti, K; Schulte, MHJ; Kleiboer, A; Van Genugten, CR; Oudega, M; Sonnenberg, C; Gonçalves, Gc; Rocha, A; Riper, H;
Publication
JMIR Research Protocols
Abstract
Background: Internet-based interventions can be effective in the treatment of depression. However, internet-based interventions for older adults with depression are scarce, and little is known about their feasibility and effectiveness. Objective: To present the design of 2 studies aiming to assess the feasibility of internet-based cognitive behavioral treatment for older adults with depression. We will assess the feasibility of an online, guided version of the Moodbuster platform among depressed older adults from the general population as well as the feasibility of a blended format (combining integrated face-to-face sessions and internet-based modules) in a specialized mental health care outpatient clinic. Methods: A single-group, pretest-posttest design will be applied in both settings. The primary outcome of the studies will be feasibility in terms of (1) acceptance and satisfaction (measured with the Client Satisfaction Questionnaire-8), (2) usability (measured with the System Usability Scale), and (3) engagement (measured with the Twente Engagement with eHealth Technologies Scale). Secondary outcomes include (1) the severity of depressive symptoms (measured with the 8-item Patient Health Questionnaire depression scale), (2) participant and therapist experience with the digital technology (measured with qualitative interviews), (3) the working alliance between patients and practitioners (from both perspectives; measured with the Working Alliance Inventory-Short Revised questionnaire), (4) the technical alliance between patients and the platform (measured with the Working Alliance Inventory for Online Interventions-Short Form questionnaire), and (5) uptake, in terms of attempted and completed modules. A total of 30 older adults with mild to moderate depressive symptoms (Geriatric Depression Scale 15 score between 5 and 11) will be recruited from the general population. A total of 15 older adults with moderate to severe depressive symptoms (Geriatric Depression Scale 15 score between 8 and 15) will be recruited from a specialized mental health care outpatient clinic. A mixed methods approach combining quantitative and qualitative analyses will be adopted. Both the primary and secondary outcomes will be further explored with individual semistructured interviews and synthesized descriptively. Descriptive statistics (reported as means and SDs) will be used to examine the primary and secondary outcome measures. Within-group depression severity will be analyzed using a 2-tailed, paired-sample t test to investigate differences between time points. The interviews will be recorded and analyzed using thematic analysis. Results: The studies were funded in October 2019. Recruitment started in September 2022. Conclusions: The results of these pilot studies will show whether this platform is feasible for use by the older adult population in a blended, guided format in the 2 settings and will represent the first exploration of the size of the effect of Moodbuster in terms of decreased depressive symptoms. © 2022 Khadicha Amarti, Mieke H J Schulte, Annet Kleiboer.
2022
Authors
Meiburger, KM; Marzola, F; Zahnd, G; Faita, F; Loizou, CP; Laine, N; Carvalho, C; Steinman, DA; Gibello, L; Bruno, RM; Clarenbach, R; Francesconi, M; Nicolaides, AN; Liebgott, H; Campilho, A; Ghotbi, R; Kyriacou, E; Navab, N; Griffin, M; Panayiotou, AG; Gherardini, R; Varetto, G; Bianchini, E; Pattichis, CS; Ghiadoni, L; Rouco, J; Orkisz, M; Molinari, F;
Publication
COMPUTERS IN BIOLOGY AND MEDICINE
Abstract
After publishing an in-depth study that analyzed the ability of computerized methods to assist or replace human experts in obtaining carotid intima-media thickness (CIMT) measurements leading to correct therapeutic decisions, here the same consortium joined to present technical outlooks on computerized CIMT measurement systems and provide considerations for the community regarding the development and comparison of these methods, including considerations to encourage the standardization of computerized CIMT measurements and results presentation. A multi-center database of 500 images was collected, upon which three manual segmentations and seven computerized methods were employed to measure the CIMT, including traditional methods based on dynamic programming, deformable models, the first order absolute moment, anisotropic Gaussian derivative filters and deep learning-based image processing approaches based on U-Net convolutional neural networks. An inter- and intra-analyst variability analysis was conducted and segmentation results were analyzed by dividing the database based on carotid morphology, image signal-to-noise ratio, and research center. The computerized methods obtained CIMT absolute bias results that were comparable with studies in literature and they generally were similar and often better than the observed inter- and intra-analyst variability. Several computerized methods showed promising segmentation results, including one deep learning method (CIMT absolute bias = 106 +/- 89 mu m vs. 160 +/- 140 mu m intra-analyst variability) and three other traditional image processing methods (CIMT absolute bias = 139 +/- 119 mu m, 143 +/- 118 mu m and 139 +/- 136 mu m). The entire database used has been made publicly available for the community to facilitate future studies and to encourage an open comparison and technical analysis
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.