Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2025

Smart Hygrothermal Ventilation, an Energy-Efficient Solution for Controlling Relative Humidity in Historical Constructions: A Case Study

Authors
Palley, B; de Freitas, VP; Abreu, P; Restivo, MT; Freitas, TS;

Publication
PROTECTION OF HISTORICAL CONSTRUCTIONS, PROHITECH 2025, VOL 1

Abstract
All over the world, there are several unoccupied spaces without adequate constant control mechanisms to reduce and prevent mold and provide good internal conditions and indoor air quality. A widespread way to reduce building humidity is through heating and dehumidification, which are costly to maintain and have high energy consumption. In addition, there are few studies on adjustable hygro ventilation systems, which do not consider the influence of temperature fluctuations. This work describes the operation of a prototype, which fills existing research gaps by considering not only the control of relative humidity (RH) but also the temperature peaks in indoor air conditions, allowing the maintenance of good air quality. The prototype Smart Hygrothermal Ventilation system uses two pairs of sensors related to RH and temperature, one pair placed inside an unoccupied compartment of the building and the other pair in the external environment, in order to activate a fan and the respective speed. The proposed prototype was applied in a compartment located on the ground floor in an unoccupied old rural building in a village near Porto during the winter period. The results show that the system performed adequately for different configurations of its functionalities. Therefore, the system offers an efficient alternative to minimize mold and the fluctuation of internal RH and temperature. Furthermore, it could be a vital mechanism for the conservation of historic buildings.

2025

Enhancing Reliability of Power Converters in Wind Farms: A Multi-Faceted Analysis of Wake Effects, Thermal Management, and Machine Learning Applications

Authors
Habib Ur Rahman Habib; Mahmoud Shahbazi;

Publication

Abstract
Abstract

This paper presents an integrated analytical approach to assess the reliability of power electronic converters in Permanent Magnet Synchronous Generator (PMSG)-based wind farms under variable wind conditions. The study focuses on analyzing the impact of wake effect turbulences and thermal management on power converter reliability, driven by the thermal stress induced by fluctuating wind speeds on power converters. Through extensive simulations using FLORIS and MATLAB, the thermal behavior of converters in wind farms affected by wake interactions was examined to identify potential reliability issues. The methodology involved modeling an 80-turbine wind farm in FLORIS to simulate wake effects, processing high-resolution wind speed data in MATLAB to refine wind speed profiles, and using Simulink to simulate the thermal profiles of power electronics. The results of FLORIS simulations highlighted the variations in turbulence intensity (TI) and power output, while the MATLAB and Simulink models quantified critical thermal stresses in power converters, correlating the locations of the turbine rows with temperature fluctuations and potential failures. Machine learning models, including Gradient Boosting and Random Forest Regressor, were utilized to refine and predict the multi-objective reliability function. The findings underscore the importance of understanding and managing thermal dynamics to improve the reliability and operational resilience of the power converter, supporting sustainable wind farm operations in dynamically changing wind conditions.

2025

Model Predictive Control Based Unified Power Quality Conditioner for Textile Industry Integrated Distribution Grids

Authors
Habib Ur Rahman Habib; uhammad Kashif Shahzad; Asad Waqar; Saeed Mian Qaisar; rooj Mubashara Siddiqui;

Publication

Abstract
Abstract

Power quality (PQ) issues, including weak grids, voltage transients, harmonics, notches, current imbalance, and voltage sags, are critical challenges in the textile industry. Even a brief power interruption can halt industrial processes, leading to substantial financial losses. This paper proposes a Model Predictive Control (MPC)-based Unified Power Quality Conditioner (UPQC) as a robust solution to mitigate these PQ disturbances in textile industry-integrated distribution grids. The proposed UPQC is designed to enhance voltage stability, suppress harmonics, regulate reactive power, and correct current imbalance, ensuring uninterrupted industrial operation. A key contribution of this work is the realistic modeling of a textile industry’s electrical network, replicating actual industry ratings to evaluate system performance. The proposed MPC-based UPQC is assessed through five case studies, addressing weak vs. strong grids, voltage transients, current imbalance, and voltage sags—the most significant PQ challenges in textile applications. Simulation results demonstrate that the UPQC significantly improves voltage profiles, reduces harmonic distortion, and effectively compensates for current imbalance. Compared to conventional Proportional-Integral (PI) controllers, the MPC-based UPQC exhibits superior performance in dynamic PQ disturbance mitigation and grid stabilization. These findings underscore the proposed system’s suitability for large-scale industrial deployment, offering a cost-effective and robust solution to enhance operational efficiency and grid reliability in the textile sector.

2024

Photovoltaic Projects for Multidimensional Poverty Alleviation: Bibliometric Analysis and State of the Art

Authors
Castro L.F.C.; Carvalho P.C.M.; Saraiva J.P.T.; Fidalgo J.N.;

Publication
International Journal of Energy Economics and Policy

Abstract
Motivated by initiatives such as the UN Sustainable Development Goals (SDG), particularly SDG 1-Poverty Eradication and SDG 7-Clean and Accessible Energy, the search for solutions aiming to mitigate poverty has been recurrent in several studies. This paper main objective is to evaluate the dynamics of global research on the use of photovoltaic projects for poverty alleviation (PVPA) from 2003 to 2022. We use a bibliometric analysis to identify publication patterns and consequently list research trends and gaps of the area. A total of 336 publications from Scopus database are identified and complemented by a state-of-the-art study, where the articles are investigated and classified according to: Business model and financing and evaluation of PVPA results. The results show that PA is often associated with PV power and its application in rural areas. “Biomass” and “application in developing countries” have become a trend. Urban areas application, aiming to reduce poverty, and the need for a synergetic integration of energy and urban planning, to mitigate the risks associated with energy flow and efficiency, are the most relevant gaps identified. Most of the publications focus on macropolicies effects involving PV technology; papers on projects construction and ex-post are not identified.

2024

Decision Aid Tool to Mitigate Quality of Service Asymmetries in Distribution Networks

Authors
Macedo, P; Fidalgo, JN;

Publication
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024

Abstract
This article presents a methodology to estimate the evolution of QoS indices, based on investments and maintenance costs carried out in the DN. The indices were estimated at various disaggregated levels, including the global index, 3 different QoS zones (urban, semi-urban and rural) and 278 municipalities, thereby facilitating the mitigation of QoS asymmetries by allocating investments and maintenance actions to specific regions. To achieve this objective, an optimization problem was formulated to allocate investments and maintenance costs to municipalities with higher improvement benefit-cost ratios, potentially exhibiting lower levels of QoS. This methodology was adopted by the Portuguese DSO to establish the future investments plan from 2023 to 2027. The results demonstrate estimations of good performance, considering the stochastic nature of the phenomena affecting QoS (e.g. atmospheric conditions), which are included in this study, thus developing confidence levels for the global indices.

2024

Virtual power plant optimal dispatch considering power-to-hydrogen systems

Authors
Rodrigues, L; Soares, T; Rezende, I; Fontoura, J; Miranda, V;

Publication
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

Abstract
Power-to-Hydrogen (P2H) clean systems have been increasingly adopted for Virtual Power Plant (VPP) to drive system decarbonization. However, current models for the joint operation of VPP and P2H often disregard the full impact on grid operation or hydrogen supply to multiple consumers. This paper contributes with a VPP operating model considering a full Alternating Current Optimal Power Flow (AC OPF) while integrating different paths for the use of green hydrogen, such as supplying hydrogen to a Combined Heat and Power (CHP), industry and local hydrogen consumers. The proposed framework is tested using a 37-bus distribution grid and the results illustrate the benefits that a P2H plant can bring to the VPP in economic, grid operation and environmental terms. An important conclusion is that depending on the prices of the different hydrogen services, the P2H plant can increase the levels of self-sufficiency and security of supply of the VPP, decrease the operating costs, and integrate more renewables.

  • 7
  • 346