Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by BIO

2018

Learning Lung Nodule Malignancy Likelihood from Radiologist Annotations or Diagnosis Data

Authors
Goncalves, L; Novo, J; Cunha, A; Campilho, A;

Publication
JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING

Abstract
Lung cancer is the world's most lethal type of cancer, being crucial that an early diagnosis is made in order to achieve successful treatments. Computer-aided diagnosis can play an important role in lung nodule detection and on establishing the nodule malignancy likelihood. This paper is a contribution in the design of a learning approach, using computed tomography images. Our methodology involves the measurement of a set of features in the nodular image region, and train classifiers, as K-nearest neighbor or support vector machine (SVM), to compute the malignancy likelihood of lung nodules. For this purpose, the Lung Image Database Consortium and image database resource initiative database is used due to its size and nodule variability, as well as for being publicly available. For training we used both radiologist's labels and annotations and diagnosis data, as biopsy, surgery and follow-up results. We obtained promising results, as an Area Under the Receiver operating characteristic curve value of 0.962 +/- 0.005 and 0.905 +/- 0.04 was achieved for the Radiologists' data and for the Diagnosis data, respectively, using an SVM with an exponential kernel combined with a correlation-based feature selection method.

2018

Fabrication of Multimode-Single Mode Polymer Fiber Tweezers for Single Cell Trapping and Identification with Improved Performance

Authors
Rodrigues, SM; Paiva, JS; Ribeiro, RSR; Soppera, O; Cunha, JPS; Jorge, PAS;

Publication
SENSORS

Abstract
Optical fiber tweezers have been gaining prominence in several applications in Biology and Medicine. Due to their outstanding focusing abilities, they are able to trap and manipulate microparticles, including cells, needing any physical contact and with a low degree of invasiveness to the trapped cell. Recently, we proposed a fiber tweezer configuration based on a polymeric micro-lens on the top of a single mode fiber, obtained by a self-guided photopolymerization process. This configuration is able to both trap and identify the target through the analysis of short-term portions of the back-scattered signal. In this paper, we propose a variant of this fabrication method, capable of producing more robust fiber tips, which produce stronger trapping effects on targets by as much as two to ten fold. These novel lenses maintain the capability of distinguish the different classes of trapped particles based on the back-scattered signal. This novel fabrication method consists in the introduction of a multi mode fiber section on the tip of a single mode (SM) fiber. A detailed description of how relevant fabrication parameters such as the length of the multi mode section and the photopolymerization laser power can be tuned for different purposes (e.g., microparticles trapping only, simultaneous trapping and sensing) is also provided, based on both experimental and theoretical evidences.

2018

PROTECT Multimodal DB: Fusion evaluation on a novel multimodal biometrics dataset envisaging Border Control

Authors
Sequeira, AF; Chen, L; Ferryman, J; Galdi, C; Chiesa, V; Dugelay, JL; Maik, P; Gmitrowicz, P; Szklarski, L; Prommegger, B; Kauba, C; Kirchgasser, S; Uhl, A; Grudzie, A; Kowalski, M;

Publication
2018 International Conference of the Biometrics Special Interest Group, BIOSIG 2018

Abstract
This work presents a novel multimodal database comprising 3D face, 2D face, thermal face, visible iris, finger and hand veins, voice and anthropometrics. This dataset will constitute a valuable resource to the field with its number and variety of biometric traits. Acquired in the context of the EU PROTECT project, the dataset allows several combinations of biometric traits and envisages applications such as border control. Based upon the results of the unimodal data, a fusion scheme was applied to ascertain the recognition potential of combining these biometric traits in a multimodal approach. Due to the variability on the discriminative power of the traits, a leave the n-best out fusion technique was applied to obtain different recognition results. © 2018 Gesellschaft fuer Informatik.

2018

End-to-End Supervised Lung Lobe Segmentation

Authors
Ferreira, FT; Sousa, P; Galdran, A; Sousa, MR; Campilho, A;

Publication
2018 International Joint Conference on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8-13, 2018

Abstract
The segmentation and characterization of the lung lobes are important tasks for Computer Aided Diagnosis (CAD) systems related to pulmonary disease. The detection of the fissures that divide the lung lobes is non-trivial when using classical methods that rely on anatomical information like the localization of the airways and vessels. This work presents a fully automatic and supervised approach to the problem of the segmentation of the five pulmonary lobes from a chest Computer Tomography (CT) scan using a Fully RegularizedV-Net (FRV- Net), a 3D Fully Convolutional Neural Network trained end-to- end. Our network was trained and tested in a custom dataset that we make publicly available. It can correctly separate the lobes even in cases when the fissure is not well delineated, achieving 0.93 in per-lobe Dice Coefficient and 0.85 in the inter-lobar Dice Coefficient in the test set. Both quantitative and qualitative results show that the proposed method can learn to produce correct lobe segmentations even when trained on a reduced dataset. © 2018 IEEE.

2018

Automatic Methods for Carotid Contrast-Enhanced Ultrasound Imaging Quantification of Adventitial Vasa Vasorum

Authors
Pereira, T; Muguruza, J; Mária, V; Vilaprinyo, E; Sorribas, A; Fernandez, E; Fernandez-Armenteros, JM; Baena, JA; Rius, F; Betriu, A; Solsona, F; Alves, R;

Publication
Ultrasound in Medicine & Biology

Abstract

2018

Quantitative Operating Principles of Yeast Metabolism during Adaptation to Heat Stress

Authors
Pereira, T; Vilaprinyo, E; Belli, G; Herrero, E; Salvado, B; Sorribas, A; Altés, G; Alves, R;

Publication
Cell Reports

Abstract

  • 64
  • 113