2018
Authors
Melo, T; Mendonça, AM; Campilho, A;
Publication
Image Analysis and Recognition - 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27-29, 2018, Proceedings
Abstract
The creation of retinal mosaics from sets of fundus photographs can significantly reduce the time spent on the diabetic retinopathy (DR) screening, because through mosaic analysis the ophthalmologists can examine several portions of the eye at a single glance and, consequently, detect and grade DR more easily. Like most of the methods described in the literature, this methodology includes two main steps: image registration and image blending. In the registration step, relevant keypoints are detected on all images, the transformation matrices are estimated based on the correspondences between those keypoints and the images are reprojected into the same coordinate system. However, the main contributions of this work are in the blending step. In order to combine the overlapping images, a color compensation is applied to those images and a distance-based map of weights is computed for each one. The methodology is applied to two different datasets and the mosaics obtained for one of them are visually compared with the results of two state-of-the-art methods. The mosaics obtained with our method present good quality and they can be used for DR grading. © 2018, Springer International Publishing AG, part of Springer Nature.
2018
Authors
Oliveira, SP; Morgado, P; Gouveia, PF; Teixeira, JF; Bessa, S; Monteiro, JP; Zolfagharnasab, H; Reis, M; Silva, NL; Veiga, D; Cardoso, MJ; Oliveira, HP; Ferreira, MJ;
Publication
Critical Reviews in Biomedical Engineering
Abstract
Breast cancer is one of the most common malignanciesaffecting women worldwide. However, despite its incidence trends have increased, the mortality rate has significantly decreased. The primary concern in any cancer treatment is the oncological outcome but, in the case of breast cancer, the surgery aesthetic result has become an important quality indicator for breast cancer patients. In this sense, an adequate surgical planning and prediction tool would empower the patient regarding the treatment decision process, enabling a better communication between the surgeon and the patient and a better understanding of the impact of each surgical option. To develop such tool, it is necessary to create complete 3D model of the breast, integrating both inner and outer breast data. In this review, we thoroughly explore and review the major existing works that address, directly or not, the technical challenges involved in the development of a 3D software planning tool in the field of breast conserving surgery. © 2018 by Begell House, Inc.
2018
Authors
Ferreira, CA; Cunha, A; Mendonça, AM; Campilho, A;
Publication
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings
Abstract
Lung cancer is one of the most common causes of death in the world. The early detection of lung nodules allows an appropriate follow-up, timely treatment and potentially can avoid greater damage in the patient health. The texture is one of the nodule characteristics that is correlated with the malignancy. We developed convolutional neural network architectures to classify automatically the texture of nodules into the non-solid, part-solid and solid classes. The different architectures were tested to determine if the context, the number of slices considered as input and the relation between slices influence on the texture classification performance. The architecture that obtained better performance took into account different scales, different rotations and the context of the nodule, obtaining an accuracy of 0.833 ± 0.041. © Springer Nature Switzerland AG 2019.
2018
Authors
Meyer, MI; Galdran, A; Costa, P; Mendonça, AM; Campilho, A;
Publication
Image Analysis and Recognition - 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27-29, 2018, Proceedings
Abstract
The classification of retinal vessels into arteries and veins in eye fundus images is a relevant task for the automatic assessment of vascular changes. This paper presents a new approach to solve this problem by means of a Fully-Connected Convolutional Neural Network that is specifically adapted for artery/vein classification. For this, a loss function that focuses only on pixels belonging to the retinal vessel tree is built. The relevance of providing the model with different chromatic components of the source images is also analyzed. The performance of the proposed method is evaluated on the RITE dataset of retinal images, achieving promising results, with an accuracy of 96 % on large caliber vessels, and an overall accuracy of 84 %. © 2018, Springer International Publishing AG, part of Springer Nature.
2018
Authors
Ferreira, PM; Sequeira, AF; Cardoso, JS; Rebelo, A;
Publication
2018 INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG)
Abstract
Fingerprint recognition has been widely studied for more than 45 years and yet it remains an intriguing pattern recognition problem. This paper focuses on the foreground mask estimation which is crucial for the accuracy of a fingerprint recognition system. The method consists of a robust cluster-based fingerprint segmentation framework incorporating an additional step to deal with pixels that were rejected as foreground in a decision considered not reliable enough. These rejected pixels are then further analysed for a more accurate classification. The procedure falls in the paradigm of classification with reject option- a viable option in several real world applications of machine learning and pattern recognition, where the cost of misclassifying observations is high. The present work expands a previous method based on the fuzzy C-means clustering with two variations regarding: i) the filters used; and ii) the clustering method for pixel classification as foreground/background. Experimental results demonstrate improved results on FVC datasets comparing with state-of-the-art methods even including methodologies based on deep learning architectures. © 2018 Gesellschaft fuer Informatik.
2018
Authors
Hofbauer H.; Jalilian E.; Sequeira A.F.; Ferryman J.; Uhl A.;
Publication
2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems, BTAS 2018
Abstract
The spread of biometric applications in mobile devices handled by untrained users opened the door to sources of noise in mobile iris recognition such as larger extent of rotation in the capture and more off-angle imagery not found so extensively in more constrained acquisition settings. As a result of the limitations of the methods in handling such large degrees of freedom there is often an increase in segmentation errors. In this work, a new near-infrared iris dataset captured with a mobile device is evaluated to analyse, in particular, the rotation observed in images and its impact on segmentation and biometric recognition accuracy. For this study a (manually annotated) ground truth segmentation was used which will be published in tandem with the paper. Similarly to most research challenges in biometrics and computer vision in general, deep learning techniques are proving to outperform classical methods in segmentation methods. The utilization of parameterized CNN-based iris segmentations in biometric recognition is a new but promising field. The results presented show how this CNN-based approach outperformed the segmentation traditional methods with respect to overall recognition accuracy for the dataset under investigation.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.