2025
Authors
Kazemi-Robati, E; Varotto, S; Silva, B; Temiz, I;
Publication
APPLIED ENERGY
Abstract
With the recent advancements in the development of hybrid offshore parks and the expected large-scale implementation of them in the near future, it becomes paramount to investigate proper energy management strategies to improve the integrability of these parks into the power systems. This paper addresses a multiobjective energy management approach using a hybrid energy storage system comprising batteries and hydrogen/fuel-cell systems applied to multi-source wind-wave and wind-solar offshore parks to maximize the delivered energy while minimizing the variations of the power output. To find the solution of the optimization problem defined for energy management, a strategy is proposed based on the examination of a set of weighting factors to form the Pareto front while the problem associated with each of them is assessed in a mixed-integer linear programming framework. Subsequently, fuzzy decision making is applied to select the final solution among the ones existing in the Pareto front. The studies are implemented in different locations considering scenarios for electrical system limitation and the place of the storage units. According to the results, applying the proposed multiobjective framework successfully addresses the enhancement of energy delivery and the decrease in power output fluctuations in the hybrid offshore parks across all scenarios of electrical system limitation and combinational storage locations. Based on the results, in addition to the increase in delivered energy, a decrease in power variations by around 40 % up to over 80 % is observed in the studied cases.
2025
Authors
Costa, VBF; Soares, T; Bitencourt, L; Dias, BH; Deccache, E; Silva, BMA; Bonatto, B; , WF; Faria, AS;
Publication
RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Abstract
Community-based electricity markets, which are defined as groups of members that share common interests in renewable distributed generation, allow prosumers to embrace more active roles by opening up several opportunities for trading electricity. At the same time, such markets may favor conventional consumers by allowing them to choose cheaper electricity providers. Due to trends in power sector modernization, community-based electricity markets are of great research interest, and there are already some associated models. However, there is a research gap in searching for integrated and holistic approaches that go beyond economic aspects, consider social and environmental aspects, and assume the balanced co-existence of community-based and conventional markets. This work fills this critical research gap by adapting/applying the optimized tariff model, Bass diffusion model, life cycle assessment, and multi-objective optimization to the context of community-based markets. Results indicate that favoring conventional markets in the short term and community-based markets in the medium term is beneficial. Moreover, regulated tariffs should increase slightly in the short/medium-term to accommodate DG growth. Additionally, community-based markets can decrease electricity expenses by around 13.6 % considering the market participants. Thus, such markets can be significantly beneficial in mitigating energy poverty.
2025
Authors
Retorta, F; Mello, J; Gouveia, C; Silva, B; Villar, J; Troncia, M; Chaves Avila, JP;
Publication
UTILITIES POLICY
Abstract
Local flexibility markets are a promising solution to aid system operators in managing the network as it faces the growth of distributed resources and the resulting impacts on voltage control, among other factors. This paper presents and simulates a proposal for an intra-day local flexibility market based on grid segmentation. The design provides a market-based solution for distribution system operators (DSOs) to address near-real-time grid issues. The grid segmentation computes the virtual buses that represent each zone and the sensitivity indices that approximate the impact of activating active power flexibility in the buses within the zone. This approach allows DSOs to manage and publish their flexibility needs per zone and enables aggregators to offer flexibility by optimizing their resource portfolios per zone. The simulation outcomes allow for the assessment of market performance according to the number of zones computed and show that addressing overloading and voltage control through zonal approaches can be cost-effective and counterbalance minor errors compared to node-based approaches.
2025
Authors
Varotto, S; Kazemi-Robati, E; Silva, B;
Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
Research around the co-location of different renewable energy technologies in offshore sites is increasing due to the potential complementarity of different sources that could decrease the power output variability, and increase reliability. However, further decrease of the power fluctuations and higher economic profitability could be achieved with energy storage. In this work, a model is developed for optimal sizing and energy management of energy storage and delivery solutions to accommodate the hybridisation of an offshore wind park. A set of options is considered for energy storage: the integration of a battery energy storage system (BESS), hydrogen production for direct sale or hydrogen/fuel cell system. For energy delivery, an expansion of the transmission cable, hydrogen pipeline or transportation by ship is evaluated. The case study used to test the model is the offshore farm WindFloat Atlantic located near the coast of Viana do Castelo, Portugal, which is proposed to be hybridised with wave energy converters (WEC). Sensitivity analyses are performed on possible components' cost variations, hydrogen shipping frequency or sale price. The results show that hydrogen production from the studied offshore hybrid park is profitable, and the transmission through submarine pipeline is competitive with electrical connections by cable. The highest profitability is achieved when pipeline and cable expansion are combined. Hydrogen transportation by ship also appears profitable, in the eventuality that additional submarine transmission facilities cannot be installed.
2025
Authors
Prakash, P; Lopes, JP; Silva, B;
Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
The rapid expansion of offshore wind farms and the development of energy islands for green hydrogen production have introduced futuristic off-grid systems. These systems can experience total shutdowns, necessitating black start solutions to ensure reliable restoration capabilities for isolated offshore wind farms. This paper investigates a grid-forming converter sizing strategy to enable black start capabilities in off-grid offshore wind farms. The study evaluates the impact of different energization strategies on battery energy storage system (BESS) sizing, focusing on soft energization with droop control in wind turbines and electrolyzers, the effects of wind turbine ramp rates on BESS requirements, and the role of switchable shunt reactors at the offshore substation for reactive power management. A comparative analysis is conducted between soft + hard and pure soft energization sequences to assess their impact on BESS converter sizing. Results demonstrate that the combined soft + hard energization strategy significantly reduces BESS converter size, offering a more cost-effective black start solution compared to pure soft energization.
2025
Authors
de Castro, R; Araujo, RE; Brembeck, J;
Publication
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING
Abstract
This work focuses on designing nonlinear control algorithms for dual half-bridge converters (DHBs). We propose a two-layer controller to regulate the current and voltage of the DHB. The first layer utilizes a change in the control variable to obtain a quasi-linear representation of the DHB, allowing for the application of simple linear controllers to regulate current and power flow. The second layer employs a nonlinear control allocation algorithm to select control actions that fulfill (pseudo) power setpoints specified by the first control layer; it also minimizes peak-to-peak currents in the DHB and enforces voltage balance constraints. We apply the DHB and this new control strategy to manage power flow in a hybrid energy storage system comprising of a battery and supercapacitors. Numerical simulation results demonstrate that, in comparison with state-of-the-art approaches, our control algorithm is capable of maintaining good transient behavior over a wide operating range, while reducing peak-to-peak current by up to 80%.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.