Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by BIO

2019

Analysis of the performance of specialists and an automatic algorithm in retinal image quality assessment

Authors
Wanderley, DS; Araujo, T; Carvalho, CB; Maia, C; Penas, S; Carneiro, A; Mendonca, AM; Campilho, A;

Publication
2019 6TH IEEE PORTUGUESE MEETING IN BIOENGINEERING (ENBENG)

Abstract
This study describes a novel dataset with retinal image quality annotation, defined by three different retinal experts, and presents an inter-observer analysis for quality assessment that can be used as gold-standard for future studies. A state-of-the-art algorithm for retinal image quality assessment is also analysed and compared against the specialists performance. Results show that, for 71% of the images present in the dataset, the three experts agree on the given image quality label. The results obtained for accuracy, specificity and sensitivity when comparing one expert against another were in the ranges [83.0 - 85.2]%, [72.7 - 92.9]% and [80.0 - 94.7]%, respectively. The evaluated automatic quality assessment method, despite not being trained on the novel dataset, presents a performance which is within inter-observer variability.

2019

LEARNING TO SEGMENT THE LUNG VOLUME FROM CT SCANS BASED ON SEMI-AUTOMATIC GROUND-TRUTH

Authors
Sousa, P; Galdran, A; Costa, P; Campilho, A;

Publication
2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019)

Abstract
Lung volume segmentation is a key step in the design of Computer-Aided Diagnosis systems for automated lung pathology analysis. However, isolating the lung from CT volumes can he a challenging process due to considerable deformations and the potential presence of pathologies. Convolutional Neural Networks (CNN) are effective tools for modeling the spatial relationship between lung voxels. Unfortunately, they typically require large quantities of annotated data, and manually delineating the lung from volumetric CT scans can he a cumbersome process. We propose to train a 3D CNN to solve this task based on semi-automatically generated annotations. For this, we introduce an extension of the well-known V-Net architecture that can handle higher dimensional input data. Even if the training set labels are noisy and contain errors, our experiments show that it is possible to learn to accurately segment the lung relying on them. Numerical comparisons on an external test set containing lung segmentations provided by a medical expert demonstrate that the proposed model generalizes well to new data, reaching an average 98.7% Dice coefficient. The proposed approach results in a superior performance with respect to the standard V-Net model, particularly on the lung boundary.

2019

Electrocardiogram Beat-Classification Based on a ResNet Network

Authors
Brito, C; Machado, A; Sousa, A;

Publication
MEDINFO 2019: HEALTH AND WELLBEING E-NETWORKS FOR ALL

Abstract
When dealing with electrocardiography (ECG) the main focus relies on the classification of the heart's electric activity and deep learning has been proving its value over the years classifying the heartbeats, exhibiting great performance when doing so. Following these assumptions, we propose a deep learning model based on a ResNet architecture with convolutional ID layers to classes the beats into one of the 4 classes: normal, atrial premature contraction, premature ventricular contraction and others. Experimental results with MIT-BIH Arrhythmia Database confirmed that the model is able to perform well, obtaining an accuracy of 96% when using stochastic gradient descent (SGD) and 83% when using adaptive moment estimation (Adam), SGD also obtained F1-scores over 90% for the four classes proposed. A larger dataset was created and tested as unforeseen data for the trained model, proving that new tests should be done to improve the accuracy of it.

2019

Non-invasive myocardial performance mapping using 3D echocardiographic stress-strain loops

Authors
Pedrosa, J; Duchenne, J; Queiros, S; Degtiarova, G; Gheysens, O; Claus, P; Voigt, JU; D'hooge, J;

Publication
PHYSICS IN MEDICINE AND BIOLOGY

Abstract
Regional contribution to left ventricular (LV) ejection is of much clinical importance but its assessment is notably challenging. While deformation imaging is often used, this does not take into account loading conditions. Recently, a method for intraventricular pressure estimation was proposed, thus allowing for loading conditions to be taken into account in a non-invasive way. In this work, a method for 3D automatic myocardial performance mapping in echocardiography is proposed by performing 3D myocardial segmentation and tracking, thus giving access to local geometry and strain. This is then used to assess local LV stress-strain relationships which can be seen as a measure of local myocardial work. The proposed method was validated against F-18-fluorodeoxyglucose positron emission tomography, the reference method to clinically assess local metabolism. Averaged over all patients, the mean correlation between FDG-PET and the proposed method was 0.67 +/- 0.18. In conclusion, stress-strain loops were, for the first time, estimated from 3D echocardiography and correlated to the clinical gold standard for local metabolism, showing the future potential of real-time 3D echocardiography ( RT3DE) for the assessment of local metabolic activity of the heart.

2019

REGISTRATION OF BREAST MRI AND 3D SCAN DATA BASED ON SURFACE MATCHING

Authors
Bessa, S; Carvalho, PH; Oliveira, HP;

Publication
2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019)

Abstract
The creation of 3D complete models of the woman breast that aggregate radiological and surface information is a crucial step for the development of surgery planning tools in the context of breast cancer. This requires the registration of interior and surface data of the breast, which has to recover large breast deformations caused by the different poses of the patient during data acquisition and has to deal with the lack of landmarks between both modalities, apart from the nipple. In this paper, the registration of Magnetic Resonance Imaging exams and 3D surface data reconstructed from Kinect (TM) acquisitions is explored using a biomechanical modelling of breast pose transformations combined with a free form deformation to finely match the data. The results are promising, with an average euclidean distance between the matched data of 0.81 +/- 0.09 mm being achieved.

2019

Literature on Wearable Technology for Connected Health: Scoping Review of Research Trends, Advances, and Barriers

Authors
Loncar Turukalo, T; Zdravevski, E; da Silva, JM; Chouvarda, I; Trajkovik, V;

Publication
JOURNAL OF MEDICAL INTERNET RESEARCH

Abstract
Background: Wearable sensing and information and communication technologies are key enablers driving the transformation of health care delivery toward a new model of connected health (CH) care. The advances in wearable technologies in the last decade are evidenced in a plethora of original articles, patent documentation, and focused systematic reviews. Although technological innovations continuously respond to emerging challenges and technology availability further supports the evolution of CH solutions, the widespread adoption of wearables remains hindered. Objective: This study aimed to scope the scientific literature in the field of pervasive wearable health monitoring in the time interval from January 2010 to February 2019 with respect to four important pillars: technology, safety and security, prescriptive insight, and user-related concerns. The purpose of this study was multifold: identification of (1) trends and milestones that have driven research in wearable technology in the last decade, (2) concerns and barriers from technology and user perspective, and (3) trends in the research literature addressing these issues. Methods: This study followed the scoping review methodology to identify and process the available literature. As the scope surpasses the possibilities of manual search, we relied on the natural language processing tool kit to ensure an efficient and exhaustive search of the literature corpus in three large digital libraries: Institute of Electrical and Electronics Engineers, PubMed, and Springer. The search was based on the keywords and properties to be found in articles using the search engines of the digital libraries. Results: The annual number of publications in all segments of research on wearable technology shows an increasing trend from 2010 to February 2019. The technology-related topics dominated in the number of contributions, followed by research on information delivery, safety, and security, whereas user-related concerns were the topic least addressed. The literature corpus evidences milestones in sensor technology (miniaturization and placement), communication architectures and fifth generation (5G) cellular network technology, data analytics, and evolution of cloud and edge computing architectures. The research lag in battery technology makes energy efficiency a relevant consideration in the design of both sensors and network architectures with computational offloading. The most addressed user-related concerns were (technology) acceptance and privacy, whereas research gaps indicate that more efforts should be invested into formalizing clear use cases with timely and valuable feedback and prescriptive recommendations. Conclusions: This study confirms that applications of wearable technology in the CH domain are becoming mature and established as a scientific domain The current research should bring progress to sustainable delivery of valuable recommendations, enforcement of privacy by design, energy-efficient pervasive sensing, seamless monitoring, and low-latency 5G communications. To complement technology achievements, future work involving all stakeholders providing research evidence on improved care pathways and cost-effectiveness of the CH model is needed.

  • 45
  • 113