Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2024

Unlocking responsive flexibility within local energy communities in the presence of grid-scale batteries

Authors
Javadi, MS;

Publication
SUSTAINABLE CITIES AND SOCIETY

Abstract
The transition towards a decentralized, decarbonized, and distributed energy infrastructure necessitates technoeconomic initiatives to empower local energy communities (LECs) to achieve self-reliance and evolve into selfsustained electricity networks. It is crucial to underscore the significance of network resilience, especially in the context of local power generation, battery storage, and the radial topology of low-voltage (LV) networks. While contemporary LV networks have made significant attempts to integrate distributed energy resources (DERs), the notable deficiency lies in their lack of network redundancy, posing a substantial challenge in the occurrence of high-impact, low-probability (HILP) events. Therefore, to enhance LV network resilience and leverage its capability to withstand unexpected disruptions, the network operator needs to unlock the potential contributions of end-users within the active distribution networks (ADNs). In this paper, a comprehensive model is developed based on multi-temporal optimal power flow (MTOPF) for unbalanced LV networks addressing the technical issues in islanded microgrid operational planning. The contributions of the grid-scale batteries in forming islanded microgrids and the flexibility that can be provided by the end-users in the LEC have been considered in this paper. To demonstrate the performance of the proposed model, the simulation studies have been carried out on a part of medium and low voltage networks, consisting of network reconfiguration and load transferring capability to reduce the service interruptions during HILP events. The energy-not-served (ENS) is chosen as one of the key performance indicators (KPIs) in this study. With the unlocking flexibility potentials and contribution of the DERs, including grid-scale energy storage (GES) units and Photovoltaic (PV) panels, the ENS has been reduced from 700.8 kWh to 447.5 kWh by activating the local resources, proper switching action, and contribution of the flexible loads, for one of the severe HILP events, i.e., the main grid outage. In this case, the full load curtailment index is reduced from 180 to 106 client hours.

2024

Optimal and distributed energy management in interconnected energy hubs

Authors
Azimi, M; Salami, A; Javadi, MS; Catalao, JPS;

Publication
APPLIED ENERGY

Abstract
Recently, multi-carrier energy systems (MCESs) have been rapidly developed as flexible multi-generation systems aiming to satisfy load demands by purchasing, converting, and storing different energy carriers. This study specifically focuses on the optimal and robust large-scale coordination of interconnected energy hubs (IEHs) in an iterative consensus-based procedure considering distribution network losses. Furthermore, a new robustbased hybrid IGDT/consensus algorithm is introduced to achieve risk-averse optimal energy management in IEHs under uncertainty. The fast convergence, needless to collect the total information from all hubs, minimal computational burden, and more robust communication system are the most important features of the proposed distributed consensus algorithm in this study. The effectiveness of the proposed consensus algorithm is verified by simulation results considering various energy trading structures in IEHs at different scales. The obtained results highlight the scalability capability of the proposed method. Regarding an IEHS of 30 energy hubs, the computation burden is lightened by 0.53 (s) and 0.1917 (s), respectively with and without uncertainty. Considering distribution network losses, the total purchasing costs can be increased by 8%. The simulation results also reveal an increase of 11% in the total power trading under the uncertainty.

2024

Unlocking Demand Response Potentials by Electric Vehicle Charging Stations in Smart Grids

Authors
Javadi, MS;

Publication
Proceedings - 24th EEEIC International Conference on Environment and Electrical Engineering and 8th I and CPS Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2024

Abstract
Increasing the number of Electric Vehicles (EVs) imposes several challenges in power distribution networks. Developed Electric Vehicle Supply Equipment (EVSE) provides fast and efficient charging of EVs at the Public Charging Stations (PCS). These chargers benefit from balanced three-phase chargers with considerable power consumption. Hence, the optimal management and task scheduling for EVSE should be arranged in such a way as to avoid overloading network infrastructure or imposing new peaks on the distribution networks. On the other hand, energy management in the presence of high renewable energy penetration due to installed Photovoltaic (PV) panels at the low-voltage (LV) distribution network should be elaborated to minimize the renewable power curtailment. Hence, this paper presents a novel model to address the optimal scheduling of charging stations availability and unlocking the Demand Response (DR) potentials at the distribution networks with highly penetrated PV panels. The energy management model is represented as a standard Mixed-Integer Linear Programming (MILP) problem which can be solved by open-source solvers. The proposed model is tested for a real case study in Portugal to demonstrate the functionality of the developed tool. © 2024 IEEE.

2024

Intelligent Short-Term Hybrid Forecasting Model Applied on a Community-based Home Energy Management System

Authors
Osório, GJ; Teixeira-Lopes, N; Javadi, MS; Catalao, JPS;

Publication
2024 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES, SEST 2024

Abstract
With technological advancement and the urgency to decarbonize energy consumption habits, smart grids have gained special prominence in recent years, highlighting the importance of the massive integration of endogenous renewable sources and decision-making tools, like forecasting tools. The relevance and accuracy of the forecast make it possible to add a contribution to energy management tools in residential communities, from the point of view of end-users and the distribution network operator. This work presents the development of a short-term hybrid forecasting model, combining Long-Short Term Memory (LSTM) model forecast with the Holt-Winters forecast model, where the ability of the LSTM stands out in capturing the complex temporal patterns of historical time series, while Holt-Winters deals with trends and seasonality of historical data. Combining these models results in an intelligent hybrid system capable of efficiently dealing with the complexity inherent to renewable energy. Then, the forecasted results from load and solar generation are introduced on the home energy management model considering a small residential community, showing the relevance of accurate forecasted results tools to assist in the making decisions processes.

2024

Prosumers' Participation through Aggregators in Multi-Carrier Energy Systems

Authors
García, DMG; Gutierrez Alcaraz, G; Tovar Hernández, JH; Javadi, MS;

Publication
2024 56TH NORTH AMERICAN POWER SYMPOSIUM, NAPS 2024

Abstract
In the context of the ongoing energy transition towards renewable sources and the decentralization of generation, multi-carrier energy systems emerge as a comprehensive solution that allows the synergic integration of different energy carriers, such as electricity, natural gas, heat, and storage, offering an effective response to the challenges posed by the variability of renewable generation and the fluctuation of energy demand. In addition, the inherent flexibility of these systems facilitates the management of the variability of renewable generation and adaptation to changes in energy demand, thus contributing to the stability and reliability of supply. In this context, the participation of prosumers who contribute their distributed generation and load flexibility through energy aggregators that effectively coordinate energy supply and demand in real-time ensures a constant balance in the energy system stands out. This paper explores the potential for various prosumer groups, facilitated by multi-carrier energy aggregators, to offer flexible services to electric distribution and natural gas grid utilities, given that natural gas is the prosumers' primary fuel for heating and cooking. The model is formulated as a two-level optimization problem. The upper level results in the emulation of the distribution system, while the lower level minimizes the flexible demand of prosumers. The interaction of the two levels is not through the price of electricity but through prosumer demand. The resulting optimization problem is a mixed-integer linear programming formulation. The results on the IEEE 33-bus distribution and 20-bus natural gas systems allow us to observe that the supply costs in the distribution and natural gas networks are efficiently reduced considering the coordination of prosumers' participation.

2024

Hybrid Energy Storage System sizing model based on load recurring pattern identification

Authors
Lucas, A; Golmaryami, S; Carvalhosa, S;

Publication
JOURNAL OF ENERGY STORAGE

Abstract
Hybrid Energy Storage Systems (HESS) have attracted attention in recent years, promising to outperform single batteries in some applications. This can be in decreasing the total cost of ownership, extending the combined lifetime, having higher versatility in providing multiple services, and reducing the physical hosting location. The sizing of hybrid systems in such a way that proves to optimally replace a single battery is a challenging task. This is particularly true if such a tool is expected to be a practical one, applicable to different inputs and which can provide a range of optimal solutions for decision makers as a support. This article provides exactly that, presenting a technology -independent sizing model for Hybrid Energy Storage Systems. The model introduces a three-step algorithm: the first block employs a clustering of time series using Dynamic Time Warping (DTW), to analyze the most recurring pattern. The second block optimizes the battery dispatch using Linear Programming (LP). Lastly, the third block identifies an optimal hybridization area for battery size configuration (H indicator), and offers practical insights for commercial technology selection. The model is applied to a real dataset from an office building to verify the tool and provides viable and non-viable hybridization sizing examples. For validation, the tool was compared to a full optimization approach and results are consistent both for the single battery sizing, as well as for confirming the hybrid combination dimensioning. The optimal solution potential (H) in the example provided is 0.13 and the algorithm takes a total of 30s to run a full year of data. The model is a Pythonbased tool, which is openly accessible on GitHub, to support and encourage further developments and use.

  • 24
  • 344