2019
Authors
Zhao P.; Wu H.; Gu C.; Hernando-Gil I.;
Publication
IET Renewable Power Generation
Abstract
Energy storage and demand response (DR) resources, in combination with intermittent renewable generation, are expected to provide domestic customers with the ability to reducing their electricity consumption. This study highlights the role that an intelligent battery control, in combination with solar generation, could play to increase renewable uptake while reducing customers' electricity bills without intruding on people's daily life. The optimal performance of a home energy management system (HEMS) is investigated through a range of interventions, leading to different levels of customer weariness and consumption patterns. Thus, the DR is applied with efficient and specific control of domestic appliances through load shifting and curtailment. Regarding the uncertainty associated with the photovoltaic generation, a chance-constrained (CC) optimal scheduling is considered subject to the operation constraints from each power component in the HEMS. By applying distributionally robust optimisation, the ambiguity set is accurately built for this distributionally robust CC (DRCC) problem without the need for any probability distribution associated with uncertainty. Based on the greatly altered consumption profiles in this study, the proposed DRCC-HEMS is proven to be optimally effective and computationally efficient while considering uncertainty.
2019
Authors
Ndawula M.B.; Djokic S.Z.; Hernando-Gil I.;
Publication
Energies
Abstract
This paper presents an integrated approach for assessing the impact that distributed energy resources (DERs), including intermittent photovoltaic (PV) generation, might have on the reliability performance of power networks. A test distribution system, based on a typical urban MV and LV networks in the UK, is modelled and used to investigate potential benefits of the local renewable generation, demand-manageable loads and coordinated energy storage. The conventional Monte Carlo method is modified to include time-variation of electricity demand profiles and failure rates of network components. Additionally, a theoretical interruption model is employed to assess more accurately the moment in time when interruptions to electricity customers are likely to occur. Accordingly, the impact of the spatio-temporal variation of DERs on reliability performance is quantified in terms of the effect of network outages. The potential benefits from smart grid functionalities are assessed through both system- and customer-oriented reliability indices, with special attention to energy not supplied to customers, as well as frequency and duration of supply interruptions. The paper also discusses deployment of an intelligent energy management system to control local energy generation-storage-demand resources that can resolve uncertainties in renewable-based generation and ensure highly reliable and continuous supply to all connected customers.
2018
Authors
Jose, DD; Fidalgo, JN;
Publication
TECHNOLOGICAL INNOVATION FOR RESILIENT SYSTEMS (DOCEIS 2018)
Abstract
Climate change has been a much-commented subject in the last years. The energy sector is a major responsible for this event and one of the most affected by it. Increasing the participation of renewable is a way to mitigate these effects. However, a system with large share of renewables (like Brazil) is more vulnerable to climate phenomena. This article analyzes the implementation of smart grids as a strategy to mitigate and adapt the electricity sector to climate change. Different climate and energy sector scenarios were simulated using a bottom-up approach with an accounting model. The results show that smart grids can help save energy, increase network resilience to natural hazards and reduce operational, maintenance costs and investments in new utilities. It would also allow tariffs diminution because of generation and losses costs reductions.
2018
Authors
Paulos, JP; Fidalgo, JN;
Publication
2018 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST)
Abstract
Over time, the electricity price and energy consumption are increasingly growing their weight as prime foundations of the electrical sector, with their analysis and forecasts being targeted as key elements for the stable maintenance of electricity markets. The advent of smart grids is escalating the importance of forecasting because of the expected ubiquitous monitoring and growing complexity of a data-rich ever-changing milieu. So, the increasing data volatility will require forecasting tools able to rapidly readjust to a dynamic environment. The Generalized Regression Neural Network (GRNN) approach is a solution that has recently re-emerged, emphasizing good performance, fast run-times and ease of parameterization. The merging of this model with more conventional methods allows us to obtain more sturdy solutions with shortened training times, when compared to conventional Artificial Neural Networks (ANN). Overall, the performance of the GRNN, although slightly inferior to that of the ANN, is suitable, but linked to much lower training times. Ultimately, the GRNN would be a proper solution to blend with the latest smart grids features, which may require much reduced forecasting training times.
2018
Authors
Fidalgo, JN; da Rocha, EFNR;
Publication
2018 15TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM)
Abstract
The price evolution in electricity market with large share of renewables often exhibits a deep volatility, triggered by external factors such as wind and water availability, load level and also by business strategies of market agents. Consequently, in many real applications, the performance of electricity price is not appropriate. The goal of this article is to analyze the available market data and characterize circumstances that affect the evolution of prices, in order to allow the identification of states that promote price instability and to confirm that class segmentation allows increasing forecast performance. A regression technique (based on Artificial Neural Networks) was applied first to the whole set and then to each class individually. Performances results showed a clear advantage (above 20%) of the second approach when compared to the first one.
2018
Authors
Vilaca Gomes, PV; Knak Neto, NK; Carvalho, L; Sumaili, J; Saraiva, JT; Dias, BH; Miranda, V; Souza, SM;
Publication
ENERGY POLICY
Abstract
The increasing integration of distributed renewable energy sources, such as photovoltaic (PV) systems, requires adequate regulatory schemes in order to reach economic sustainability. Incentives such as Feed-in Tariffs and Net Metering are seen as key policies to achieve this objective. While the Feed-in Tariff scheme has been widely applied in the past, it has now become less justified mainly due to the sharp decline of the PV system costs. Consequently, the Net Metering scheme is being adopted in several countries, such as Brazil, where it has is in force since 2012. In this context, this paper aims to estimate the minimum monthly residential demand for prosumers located in the different distribution concession areas in the interconnected Brazilian system that ensures the economic viability of the installation of PV systems. In addition, the potential penetration of PV based distributed generation (DG) in residential buildings is also estimated. This study was conducted for the entire Brazilian interconnected system and it demonstrates that the integration of distributed PV systems is technical-economic feasible in several regions of the country reinforcing the role of the distributed solar energy in the diversification of Brazilian electricity matrix.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.