Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2024

Optimising green hydrogen injection into gas networks: Decarbonisation potential and influence on quality-of-service indexes

Authors
Fontoura, J; Soares, FJ; Mourao, Z; Coelho, A;

Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS

Abstract
This paper introduces a mathematical model designed to optimise the operation of natural gas distribution networks, considering the injection of hydrogen in multiple nodes. The model is designed to optimise the quantity of hydrogen injected to maintain pressure, gas flows, and gas quality indexes (Wobbe index (WI) and higher heating value (HHV)) within admissible limits. This study also presents the maximum injection allowable of hydrogen correlated with the gas quality index variation. The model has been applied to a case study of a gas network with four distinct scenarios and implemented using Python. The findings of the case study quantify the maximum permitted volume of hydrogen in the network, the total savings in natural gas, and the reduction in carbon dioxide emissions. Lastly, a sensitivity analysis of injected hydrogen as a function of the Wobbe index (WI) and Higher Heating Value (HHV) limits relaxation.

2024

Hydrogen Electrolyser participation in Automatic Generation Control using Model Predictive Control

Authors
Ribeiro, FJ; Lopes, JAP; Soares, FJ; Madureira, AG;

Publication
2024 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES, SEST 2024

Abstract
Traditionally, proportional-integral (PI) control has ensured the successful application of automatic generation control (AGC). Two design features of AGC-PI are the following: (1) it is merely a reactive system which does not take full advantage of existing knowledge about the system and (2) the control signal sent to all units is divided proportionally to their participation in the AGC. These two features ensure simplicity and, thus, reliability for the regular functioning of the power system. However, when the power system is recovering from a loss of generation, such features can become shortcomings. This paper proposes a model predictive control (MPC) to improve performance of AGC in such a scenario. The contrast with the traditional approach is as follows: instead of using merely two system measures which are also the control objectives (frequency and interconnection flow), the proposed controller relies on an internal model that takes advantage of further known variables of the power system, especifically the ramping capabilities of participating units. While still respecting the participation factors, it is shown that the proposed model allows to exhaust earlier the availability of faster units, such as some demand response, as the one to be provided by hydrogen electrolysers, and thus reestablishes the frequency and interconnection flows in a faster way than typical AGC-PI.

2024

Optimal planning of a green hydrogen fueling station

Authors
Coelho, A; Soares, FJ; Iria, JP;

Publication
IEEE PES Innovative Smart Grid Technologies Europe, ISGT EUROPE 2024, Dubrovnik, Croatia, October 14-17, 2024

Abstract
As the global community transitions towards decarbonization and sustainable energy, green hydrogen is emerging as a key clean energy carrier. This paper addresses the role of hydrogen in transportation, emphasizing the European Union's additionality principle for renewable energy sources in green hydrogen production. It introduces a model for optimally designing hydrogen fueling stations, considering electrolyzers, hydrogen storage, fuel cells, PV systems, and batteries. This model also considers the participation in electricity (energy and secondary reserve), hydrogen, and oxygen markets, and it is evaluated under different additionality policy scenarios. Results indicate that stricter additionality policies reduce the internal rate of return. However, participation in secondary reserve markets significantly boosts operational revenues and compensates for higher investment costs. © 2024 IEEE.

2024

Effects of Temperature Variation on the Capacity of Gas Networks to Receive Injections of Green Hydrogen

Authors
Fontoura, J; Soares, FJ; Mourao, Z;

Publication
2024 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE, ISGT EUROPE

Abstract
The literature on the isothermal model gas flow is extensive, but the effect of temperature variation on the hydraulic characteristics has been rarely addressed. Additionally, the impact of hydrogen blending on the thermal condition of NG pipelines is also an emergent topic that requires new approaches to the gas flow problem formulation and resolution. In this paper, a model for the gas flow problem was developed to optimise the operation of natural gas distribution networks with hydrogen injection while maintaining pressure, gas flows, and gas quality indexes within admissible limits. The goal is to maximise the injection of hydrogen and investigate the influences of thermal variations in the gas blending. Also, this model enables the calculation of the maximum permitted volume of hydrogen in the network, quantifying the total savings in natural gas usage and carbon dioxide emissions in different temperature conditions.

2024

Operation of an industrial green amonnia fuel hub participating in secondary reserve markets

Authors
Coelho, A; Soares, F;

Publication
2024 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE, ISGT EUROPE

Abstract
Green ammonia production stands as a pivotal component in the transition towards sustainable energy and agriculture, poised to revolutionize numerous industries. This paper presents an optimization control framework for industrial green ammonia fuel hubs to engage in electricity, hydrogen, and oxygen markets, addressing both economic and technical considerations. By evaluating scenarios with and without battery storage, this study demonstrates the potential for increased profitability and energy independence through secondary reserve market participation, alongside insights into the economic viability of photovoltaic investments. These findings underscore the importance of considering market dynamics and technological integration in the sustainable operation of green ammonia production hubs.

2024

Holistic regulatory framework for distributed generation based on multi-objective optimization

Authors
da Costa, VBF; Bitencourt, L; Peters, P; Dias, BH; Soares, T; Silva, BMA; Bonatto, BD;

Publication
JOURNAL OF CLEANER PRODUCTION

Abstract
Regulatory changes associated with distributed generation have occurred in several countries (e.g., the USA, Germany, the UK, and Australia). However, there is a lack of robust and holistic analytical models that can be used to implement the best regulatory framework among possible options. In this context, the present paper proposes a cutting-edge regulatory framework for distributed generation based on multi-objective optimization, taking into account socioeconomic (socioeconomic welfare created by the regulated electricity market and electricity tariff affordability) and environmental (global warming potential) indicators. Such indicators are modeled primarily based on the optimized tariff model (socioeconomic regulated electricity market model), Bass diffusion model (forecasting model of distributed generation deployment), and life cycle assessment (environmental impact assessment method). The design variables are assumed to be the regulated electricity tariff and remuneration of the electricity injected into the grid over the years. First, the proposed methodology is applied to fifteen large-scale Brazilian concession areas with a significant deployment of distributed generation assuming two approaches, a multi-compensation scenario, where the compensation is set individually for each concession area, and a single-compensation scenario, where the compensation is set equally for all concession areas. Then, the optimal solutions are compared to Ordinary Law 14300, which is a recently implemented regulatory framework for distributed generation in Brazil. Results demonstrate that Ordinary Law 14300 is a dominated or non-optimal solution since it is not located on the optimal Pareto frontiers for any of the assessed concession areas. Assuming the Euclidian knee points, benefits averaging 33% and 15% were achieved in terms of electricity tariff affordability for the multi and single-compensation scenarios, respectively, with small losses of 8% and 3% in terms of socioeconomic welfare and global warming potential. Though the proposed methodology is applied in the Brazilian context, it can also be applied to other countries with regulated electricity markets; thus, it is expected to be valuable for researchers, government institutions, and regulatory agencies worldwide.

  • 13
  • 344