2019
Authors
Iria, J; Soares, F;
Publication
ELECTRIC POWER SYSTEMS RESEARCH
Abstract
Optimizing the participation of a large number of prosumers in the electricity markets is a challenging problem, especially for portfolios with thousands or millions of flexible resources. To address this problem, this paper proposes a cluster-based optimization approach to support an aggregator in the definition of demand and supply bids for the day-ahead energy market. This approach consists of two steps. In the first step, the aggregated flexibility of the entire portfolio is computed by a centroid-based clustering algorithm. In the second step, the supply and demand bids are defined by an optimization model that can assume the form of a deterministic or a two-stage stochastic problem. A case study of 10,000 prosumers from the Iberian market is used to evaluate and compare the performance of the bidding optimization models with and without pre-clustering. The numerical results show that the optimized bidding strategies outperform an inflexible strategy by more than 20% of cost savings. The centroid-based clustering algorithm reduces effectively the execution times of the bidding optimization problems, without affecting the quality of the energy bids.
2019
Authors
Tsiamitros, D; Stimoniaris, D; Kottas, T; Orth, C; Soares, F; Madureira, A; Leonardos, D; Panagiotou, S; Chountala, C;
Publication
RENEWABLE ENERGY INTEGRATION WITH MINI/MICROGRID
Abstract
The main objective of this paper is to present a new and cost-effective Information and Communication Technology (ICT) tool that can lead to efficient energy management in buildings and optimal operation of electricity networks with increased share of Renewable Energy Sources (RES) and Electric Vehicles (EVs). The new ICT infrastructure is based on the Digital Audio Broadcasting (DAB) standard and its interoperability with smart metering technology, Intelligent Transportation Systems (ITS) and Building Automation Systems (BAS). The main idea involves the attachment of a DAB receiver to electric devices (from small household appliances up to EVs and solar systems and other RES). In this paper, the DAB protocol is described, enabling high cyber-physical security. Moreover, the results of addressing a thermostatically-controlled load using DAB-signaling in Switzerland are also presented. The next steps envisioned are i) the validation of the final protocol version and of the DAB receivers for various electric appliances and DR schemes and, ii) demonstration of the new technology in real-life cases through the National DAB broadcaster in Greece. (C) 2019 The Authors. Published by Elsevier Ltd.
2019
Authors
Zehir, MA; Ortac, KB; Gul, H; Batman, A; Aydin, Z; Portela, JC; Soares, FJ; Bagriyanik, M; Kucuk, U; Ozdemir, A;
Publication
ENERGIES
Abstract
Demand management is becoming an indispensable part of grid operation with its potential to aid supply/demand balancing, reduce peaks, mitigate congestions and improve voltage profiles in the grid. Effective deployments require a huge number of reliable participators who are aware of the flexibilities of their devices and who continuously seek to achieve savings and earnings. In such applications, smart meters can ease consumption behavior visibility, while building automation systems can enable the remote and automated control of flexible loads. Moreover, gamification techniques can be used to motivate and direct customers, evaluate their performance, and improve their awareness and knowledge in the long term. This study focuses on the design and field demonstration of a flexible device-oriented, smart meter and building automation system (BAS) compatible with a gamified load management (LM) platform for residential customers. The system is designed, based on exploratory surveys and systematic gamification approaches, to motivate the customers to reduce their peak period consumption and overall energy consumption through competing or collaborating with others, and improving upon their past performance. This paper presents the design, development and implementation stages, together with the result analysis of an eight month field demonstration in four houses with different user types in Istanbul, Turkey.
2019
Authors
Rodrigues, JL; Bolognesi, HM; Melo, JD; Heymann, F; Soares, FJ;
Publication
ENERGY
Abstract
The use of fossil fuel vehicles is one of the factors responsible for the degradation of air quality in urban areas. In order to reduce levels of air pollution in metropolitan areas, several countries have encouraged the use of electric vehicles in the cities. However, due to the high investment costs in this class of vehicles, it is expected that the spatial distribution of electric vehicles' adopters will be heterogeneous. The additional charging power required by electric vehicles' batteries can change operation and expansion planning of power distribution utilities. In addition, urban planning agencies should analyze the most suitable locations for the construction of electric vehicle recharging stations. Thus, in order to provide information for the planning of electric mobility services in the city, this paper presents a spatiotemporal model for estimating the rate of electric vehicles' adopters per subareas. Results are spatial databases that can be viewed in geographic information systems to observe regions with greater expectancy of residential electric vehicle adopters. These outcomes can help utilities to develop new services that ground on the rising availability of electric mobility in urban zones.
2019
Authors
Iria, J; Soares, F;
Publication
APPLIED ENERGY
Abstract
The foreseen participation of aggregators of prosumers in the electricity markets will require the development of computational tools to support them in the definition and delivery of market products. This paper proposes a new hierarchical model predictive control (MPC) to support an aggregator in the delivery of multiple market products through the real-time control of heterogeneous flexible resources. The hierarchical MPC covers the participation of an aggregator in both energy and secondary reserve markets. The results show that the aggregator is capable of delivering several combinations of energy and secondary reserve without compromising the comfort and preferences of its clients.
2019
Authors
Neyestani, N; Coelho, A; Soares, F;
Publication
2019 16TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET (EEM)
Abstract
The multi-energy systems (MES) contain key resources driving the evolution of the future systems. Various components and convertors that are available in a MES make it operationally flexible and a potential source to be deployed in system operation. Like any other resources in the system, the flexibility brought by MES needs to be fairly valued. One of the approaches is through market participation of these resources. In this regard, new agents and trade system need to be defined. This paper studies the interactions of a multi-energy aggregator on various trade levels defined within the multi-energy paradigm. The levels include the upstream multi-energy markets as well as local energy trades such as local resources and flexible demand. The results discuss the increased level of profit due to the availability of multi-energy trade to the aggregator.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.