Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2020

A duality theory approach to the environmental/economic dispatch problem

Authors
Carrillo-Galvez A.; Flores-Bazán F.; López E.;

Publication
Electric Power Systems Research

Abstract
In this paper a duality theory approach is proposed for solving the environmental/economic dispatch problem. For the multiobjective problem scalarization, weighted sum method is used and the associated dual problem is solved using a quadratic programming algorithm. This strategy is tested on three systems with different number of generators and characteristics. The obtained results are compared with other previously reported, showing some advantages of the proposed approach.

2020

UTILIZAÇÃO DA APRENDIZAGEM BASEADA EM PROJETO (ABP) PARA O DESENVOLVIMENTO DE UM ROBÔ AUTÔNOMO PARA MAPEAMENTO DE AMBIENTES CONTROLADOS

Authors
Marquioro de Freitas, C; Gelati Pascoal, P; Noster Kurschner, V;

Publication
Proceedings of the XLVIII Brasilian Congress of Engineering Education

Abstract

2020

DESENVOLVIMENTO DE UM MANIPULADOR ROBÓTICO CONTROLADO POR APLICATIVO UTILIZANDO A METODOLOGIA ABP PARA A DISCIPLINA DE MICROPROCESSADORES

Authors
Gelati Pascoal, P; Marquioro de Freitas, C; Fernando Sauthier, L; Flores Copetti, D;

Publication
Proceedings of the XLVIII Brasilian Congress of Engineering Education

Abstract

2020

Forecasting heating and cooling energy demand in an office building using machine learning methods

Authors
Godinho, X; Bernardo, H; Oliveira, FT; Sousa, JC;

Publication
Proceedings - 2020 International Young Engineers Forum, YEF-ECE 2020

Abstract
Forecasting heating and cooling energy demand in buildings plays a critical role in supporting building management and operation. Thus, analysing the energy consumption pattern of a building could help in the design of potential energy savings and also in operation fault detection, while contributing to provide proper indoor environmental conditions to the building's occupants.This paper aims at presenting the main results of a study consisting in forecasting the hourly heating and cooling demand of an office building located in Lisbon, Portugal, using machine learning models and analysing the influence of exogenous variables on those predictions. In order to forecast the heating and cooling demand of the considered building, some traditional models, such as linear and polynomial regression, were considered, as well as artificial neural networks and support vector regression, oriented to machine learning. The input parameters considered in the development of those models were the hourly heating and cooling energy historical records, the occupancy, solar gains through glazing and the outside dry-bulb temperature.The models developed were validated using the mean absolute error (MAE) and the root mean squared error (RMSE), used to compare the values obtained from machine learning models with data obtained through a building energy simulation performed on an adequately calibrated model.The proposed exploratory analysis is integrated in a research project focused on applying machine learning methodologies to support energy forecasting in buildings. Hence, the research line proposed in this article corresponds to a preliminary project task associated with feature selection/extraction and evaluation of potential use of machine learning methods. © 2020 IEEE.

2020

Simulação Híbrida para Monitoramento de Tensão e Corrente em Redes de Distribuição com Geração Distribuída

Authors
Reiz, C; B. Leite, J;

Publication
Anais do Congresso Brasileiro de Automática 2020

Abstract
O sistema de distribuição de energia elétrica é a parcela do sistema de potência mais vulnerável aos eventos de interrupção, originados por fatores naturais externos ou intrínsecos aos equipamentos elétricos. Na mitigação dos impactos desses eventos, simuladores digitais em tempo real são utilizados na obtenção dos transitórios do sistema elétrico, todavia, essa técnica demanda grande esforço computacional. Nesse contexto, propõe-se uma técnica híbrida para simulação do transitório em sistemas de distribuição, combinando a alta taxa de amostragem dos modelos no domínio do tempo para monitoramento de tensão e corrente com a velocidade de processamento dos algoritmos que operam os modelos fasoriais em regime quase-estacionário, ou permanente. A metodologia proposta também permite considerar diferentes tecnologias de geradores distribuídos acoplados na rede. Os resultados dos testes realizados indicam a consistência da metodologia proposta, representando o comportamento do transitório no sistema de distribuição de energia elétrica. Todas as simulações realizadas são comparadas com valores amostrais obtidos usando um software comercial especializado.

2020

APLICAÇÃO DE CONTORNOS ATIVOS NA EXTRAÇÃO DE FEIÇÕES EM IMAGENS LANDSAT 8 E CBERS 4

Authors
Reiz, C; Zanin, RB; Martins, EFdO; Filgueiras, JLD; Evaristo, JW;

Publication
As Ciências Exatas e da Terra e a Interface com vários Saberes 2

Abstract

  • 113
  • 344