2026
Authors
Fernandes, P; Ciardhuáin, SO; Antunes, M;
Publication
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT I
Abstract
The increasing connectivity of Internet of Medical Things (IoMT) devices has accentuated their susceptibility to cyberattacks. The sensitive data they handle makes them prime targets for information theft and extortion, while outdated and insecure communication protocols further elevate security risks. This paper presents a lightweight and innovative approach that combines Benford's law with statistical distance functions to detect attacks in IoMT devices. The methodology uses Benford's law to analyze digit frequency and classify IoMT devices traffic as benign or malicious, regardless of attack type. It employs distance-based statistical functions like Jensen-Shannon divergence, KullbackLeibler divergence, Pearson correlation, and the Kolmogorov test to detect anomalies. Experimental validation was conducted on the CIC-IoMT-2024 benchmark dataset, comprising 45 features and multiple attack types. The best performance was achieved with the Kolmogorov test (alpha = 0.01), particularly in DoS ICMP attacks, yielding a precision of.99.24%, a recall of.98.73%, an F1 score of.98.97%, and an accuracy of.97.81%. Jensen-Shannon divergence also performed robustly in detecting SYN-based attacks, demonstrating strong detection with minimal computational cost. These findings confirm that Benford's law, when combined with well-chosen statistical distances, offers a viable and efficient alternative to machine learning models for anomaly detection in constrained environments like IoMT.
2026
Authors
Palma, A; Antunes, M; Alves, A;
Publication
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT I
Abstract
Ensuring the security of Industrial Control Systems (ICS) is increasingly critical due to increasing connectivity and cyber threats. Traditional security measures often fail to detect evolving attacks, necessitating more effective solutions. This paper evaluates machine learning (ML) methods for ICS cybersecurity, using the ICS-Flow dataset and Optuna for hyperparameter tuning. The selected models, namely Random Forest (RF), AdaBoost, XGBoost, Deep Neural Networks, Artificial Neural Networks, ExtraTrees (ET), and Logistic Regression, are assessed using macro-averaged F1-score to handle class imbalance. Experimental results demonstrate that ensemble-based methods (RF, XGBoost, and ET) offer the highest overall detection performance, particularly in identifying commonly occurring attack types. However, minority classes, such as IP-Scan, remain difficult to detect accurately, indicating that hyperparameter tuning alone is insufficient to fully deal with imbalanced ICS data. These findings highlight the importance of complementary measures, such as focused feature selection, to enhance classification capabilities and protect industrial networks against a wider array of threats.
2026
Authors
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (9)
Abstract
2026
Authors
Pfahringer, B; Japkowicz, N; Larrañaga, P; Ribeiro, RP; Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (8)
Abstract
2026
Authors
Dutra, I; Pechenizkiy, M; Cortez, P; Pashami, S; Pasquali, A; Moniz, N; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (10)
Abstract
2026
Authors
Afonso Vilalonga; Kevin Gallagher; João S. Resende; Henrique Domingos;
Publication
Proceedings on Privacy Enhancing Technologies
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.