Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Pedro Miguel Carvalho

2024

A Transition Towards Virtual Representations of Visual Scenes

Authors
Pereira, A; Carvalho, P; Côrte Real, L;

Publication
Advances in Internet of Things & Embedded Systems

Abstract
We propose a unified architecture for visual scene understanding, aimed at overcoming the limitations of traditional, fragmented approaches in computer vision. Our work focuses on creating a system that accurately and coherently interprets visual scenes, with the ultimate goal to provide a 3D virtual representation, which is particularly useful for applications in virtual and augmented reality. By integrating various visual and semantic processing tasks into a single, adaptable framework, our architecture simplifies the design process, ensuring a seamless and consistent scene interpretation. This is particularly important in complex systems that rely on 3D synthesis, as the need for precise and semantically coherent scene descriptions keeps on growing. Our unified approach addresses these challenges, offering a flexible and efficient solution. We demonstrate the practical effectiveness of our architecture through a proof-of-concept system and explore its potential in various application domains, proving its value in advancing the field of computer vision.

2025

Enhancing Weakly-Supervised Video Anomaly Detection With Temporal Constraints

Authors
Caetano, F; Carvalho, P; Mastralexi, C; Cardoso, JS;

Publication
IEEE ACCESS

Abstract
Anomaly Detection has been a significant field in Machine Learning since it began gaining traction. In the context of Computer Vision, the increased interest is notorious as it enables the development of video processing models for different tasks without the need for a cumbersome effort with the annotation of possible events, that may be under represented. From the predominant strategies, weakly and semi-supervised, the former has demonstrated potential to achieve a higher score in its analysis, adding to its flexibility. This work shows that using temporal ranking constraints for Multiple Instance Learning can increase the performance of these models, allowing the focus on the most informative instances. Moreover, the results suggest that altering the ranking process to include information about adjacent instances generates best-performing models.

2025

Correction: Guimarães et al. A Review of Recent Advances and Challenges in Grocery Label Detection and Recognition. Appl. Sci. 2023, 13, 2871

Authors
Guimarães, V; Nascimento, J; Viana, P; Carvalho, P;

Publication
Applied Sciences

Abstract
There was an error in the original publication [...]

  • 7
  • 7