Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CESE

2024

Evaluating parcel delivery strategies in different terrain conditions

Authors
Silva, V; Vidal, K; Fontes, T;

Publication
TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE

Abstract
The impacts of the e-commerce growth have increased the urgency in designing and adopting new alternative delivery strategies. In this context, it is important to consider the particularities of each city like its terrain conditions. This article aims at exploring the impact of road slopes on parcel delivery operations, and how they condition the adoption and implementation of alternative, more sustainable delivery strategies. To this end, a microscopic traffic simulator was used to evaluate different delivery strategies including ICE vans, electric vans, and cargo bikes in three different slope scenarios. This evaluation was based on a medium-sized European city and conducted by comparing the same parcel delivery route at three levels: operational (route length, duration, and waiting time), energy consumption, and emissions. The results revealed that as the road slopes increased, more time was needed to deliver all packages, waiting times grew longer, and vehicles' energy consumption and emissions levels intensified. From the flat terrain to the most sloped terrain, there was an increase in duration of around 5% for traditional and electric vans, 35% for large cargo bikes, and 14% for small cargo bikes. The ICE van suffers a 105% increase in waiting time; the electric van 71%; the large cargo bike 68% and the small cargo bike 52%. Energy consumption also varied, with ICE vans and small cargo bikes consuming nearly 30% more energy, while electric vans and large cargo bikes consumed 4% and 60% more energy, respectively. The ICE van's emissions of CO, HC, PMx, NOx, and CO2 are 13%, 10%, 1%, 20%, and 29% higher, respectively. Moreover, in flatter terrains, the better strategies are the electric van or a large cargo bike, while in more sloped terrains, the most adequate one is the electric van. These findings suggest that the electric van is the best overall strategy for different terrains and different decision-making profiles, ranking first in more than 70% of the profiles across all three terrains.

2024

Bi-LSTM Neural Networks for Traffic Flow Prediction: An Empirical Evaluation

Authors
Alves, BA; Fontes, T; Rossetti, R;

Publication
Progress in Artificial Intelligence - 23rd EPIA Conference on Artificial Intelligence, EPIA 2024, Viana do Castelo, Portugal, September 3-6, 2024, Proceedings, Part II

Abstract
Traffic flow prediction is a critical component of intelligent transportation systems. This study introduces a Bidirectional Long Short-Term Memory (Bi-LSTM) neural network for predicting traffic flow. The model utilizes traffic, weather, and holiday data. To evaluate the model’s performance, three experiments were assessed: E1, using all available inputs; E2, excluding weather conditions; and E3 excluding holiday information. The model was trained using the previous 3, 12, and 24 h of data to predict traffic flow for the next 12 h, and its performance was compared with a LSTM model. Traffic predictions benefit from having a large and diverse dataset. Bi-LSTM model can capture temporal patterns more effectively than the LSTM. The MAPE value is improved in around 1% when we increase the historical from 3h to 24 h, plus 1% if Bi-LSTM model is used. Better results are obtained when contextual information is provided. These results reinforce the potential that deep learning models have in the prediction of traffic conditions and the impact of a large and varied dataset in the accuracy of these predictions. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

A Multi-Stakeholder Information System for Traffic Restriction Management

Authors
Malafaia, MI; Ribeiro, J; Fontes, T;

Publication
LOGISTICS-BASEL

Abstract
Background: In many urban areas, 80% to 90% of pollutant emissions are generated by road traffic, particularly from heavy vehicles. With the anticipated surge in e-commerce logistics, the need for effective urban mobility control measures has become urgent, focusing on traffic restrictions and efficient enforcement tools. This work introduces Log-ON, a multi-stakeholder information system designed to facilitate the implementation and management of sustainable traffic restrictions. Methods: The proposed system was developed through extensive literature reviews, expert consultations, and feedback from logistics fleet managers. User-centered mock-ups were created for various stakeholders, including the public, regulatory authorities, logistics operators, and enforcement agencies, ensuring that the system effectively addresses a diverse set of needs. Results: By taking into account a wide range of influencing factors, Log-ON functions as a decision-support tool designed to optimize access restrictions for vehicles, particularly heavy vehicles, in urban environments. Conclusions: Log-ON's adoption promises significant improvements in urban mobility by reducing traffic-related pollution and fostering healthier, cleaner cities. However, traffic restrictions could increase delivery costs, potentially disrupting logistics operations. To address this, the development of new business models for last-mile delivery is essential, ensuring that sustainable traffic management strategies align with the economic challenges faced by logistics providers.

2024

Digital Factory for Product Customization: A Proposal for a Decentralized Production System

Authors
Castro, H; Câmara, F; Câmara, E; Avila, P;

Publication
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: ESTABLISHING BRIDGES FOR MORE SUSTAINABLE MANUFACTURING SYSTEMS, FAIM 2023, VOL 1

Abstract
The digitalization and evolution of information technologies within the industry 4.0 have allowed the creation of the virtual model of the production system, called Digital Twin, with the capacity to simulate different scenarios, providing support for better decision-making. This tool not only represents a virtual copy of the physical world that obtains information about the state of the value chain but also illustrates a system capable of changing the development of productive activity towards personalized production, extending product versatility. Decentralized production seeks to respond to these needs because it allows the agglomeration of several services with different geographic locations, promoting the sharing of resources. This paper proposes an architecture for the development of a digital platform of personalization and decentralization of production based on sharing of sustainable resources. With a single tool, it is possible to define the entire production line for a product.

2024

Development and Analysis of Predictive Models for Industry 4.0 with an Open-Source Tool

Authors
Castro, H; Câmara, E; Câmara, F; Avila, P;

Publication
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: ESTABLISHING BRIDGES FOR MORE SUSTAINABLE MANUFACTURING SYSTEMS, FAIM 2023, VOL 2

Abstract
Industry 4.0 brought modernization to the productive system through the network integration of the constituent entities that, combined with the evolution of information technologies, allowed an increase in productivity, product quality, production cost optimization, and product customization to customer needs. In this paper a model was created using the open-source tool Knime that, based on a set of data provided by Bosch, parameterized the model with several pre-processing techniques, resource selection, and minimization of over-fitting, allowing the development of a final improved model for internal product failure prediction at Bosch production line. The study shows that model efficiency improved with the application of resource selection and reduction techniques, with Logistic Regression and PCA resource selection techniques standing out, obtaining a Recall of 100% and precision and accuracy, both with 99.43%.

2024

Energy and Circular Economy: Nexus beyond Concepts

Authors
Martins, FF; Castro, H; Smitková, M; Felgueiras, C; Caetano, N;

Publication
SUSTAINABILITY

Abstract
Energy and materials are increasingly important in industrialized countries, and they impact the economy, sustainability, and people's future. The purpose of this work was to study the relationship between energy and the circular economy using methods such as Pearson's correlation and a principal component analysis. Thus, 12 strong correlations were found, with 5 of them between the following relevant variables from two different subjects: the correlations of the raw material consumption, the domestic material consumption, and the material import dependency with the final energy consumption in transport (0.81, 0.92, and 0.81); the correlation of the circular material use rate with the final energy consumption in households (0.70); and the correlation of the material import dependency with the final energy consumption in industry (0.89). The time series forecast was only conclusive for the waste generated, showing that it will increase in the next 10 years.

  • 12
  • 220