2022
Authors
Braun, J; Mendes, J; Pereira, AI; Lima, J; Costa, P;
Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2022
Abstract
The urge for robust and reliable localization systems for autonomous mobile robots (AMR) is increasing since the demand for these automated systems is rising in service, industry, and other areas of the economy. The localization of AMRs is one of the crucial challenges, and several approaches exist to solve this. The most well-known localization systems are based on LiDAR data due to their reliability, accuracy, and robustness. One standard method is to match the reference map information with the actual readings from LiDAR or camera sensors, allowing localization to be performed. However, this approach has difficulties handling anything that does not belong to the original map since it affects the matching algorithm's performance. Therefore, they should be considered outliers. In this paper, a deep learning-based object detection algorithm is not only used for detection but also to classify them as outliers from the localization's perspective. This is an innovative approach to improve the localization results in a realmobile platform. Results are encouraging, and the proposed methodology is being tested in a real robot.
2022
Authors
Bierende, J; Braun, J; Costa, P; Lima, J; Pereira, AI;
Publication
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, OL2A 2022
Abstract
Three-dimensional scanning is a task of great importance for our modern society and has brought significant advances in the precision of material inventory. These sensors map the material surface continuously, allowing real-time inventory monitoring. Most technologies are expensive because this process is complex, and even inexpensive ones are considerate smart investments for the average user. Therefore, this work presents the simulation of a low-cost time-of-flight based 3D scanning system that performs the volume estimation of an object-filled indoor space after a voxelization process. The system consists of a 2D LIDAR scanner that performs an azimuthal scan of 180. through its rotating platform and a motor that rotates the platform in angle inclination.
2022
Authors
Lima, J; Kalbermatter, RB; Braun, J; Brito, T; Berger, G; Costa, P;
Publication
2022 LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS), 2022 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR), AND 2022 WORKSHOP ON ROBOTICS IN EDUCATION (WRE)
Abstract
The experimental component is an essential method in Engineering education. Sometimes the availability of laboratories and components is compromised, and the COVID19 pandemic worsened the situation. Resorting to an accurate simulation seems to help this process by allowing students to develop the work, program, test, and validate it. Moreover, it lowers the development time and cost of the prototyping stages of a robotics project. As a multidisciplinary area, robotics requires simulation environments with essential characteristics, such as dynamics, connection to hardware (embedded systems), and other applications. Thus, this paper presents the Simulation environment of SimTwo, emphasizing previous publications with models of sensors, actuators, and simulation scenes. The simulator can be used for free, and the source code is available to the community. Proposed scenes and examples can inspire the development of other simulation scenes to be used in electrical and mechanical Engineering projects.
2022
Authors
Magalhães, SC; Moreira, AP; Costa, P;
Publication
CoRR
Abstract
2022
Authors
Gomes, NM; Martins, FN; Lima, J; Wörtche, H;
Publication
Automation
Abstract
2022
Authors
Amoura, Y; Pereira, AI; Lima, J;
Publication
SUSTAINABLE ENERGY FOR SMART CITIES, SESC 2021
Abstract
Future power systems encourage the use of renewable energy resources, among them wind power is of great interest, but its power output is intermittent in nature which can affect the stability of the power system and increase the risk of blackouts. Therefore, a forecasting model of the wind speed is essential for the optimal operation of a power supply with an important share of wind energy conversion systems. In this paper, two wind speed forecasting models based on multiple meteorological measurements of wind speed and temperature are proposed and compared according to their mean squared error (MSE) value. The first model concerns the artificial intelligence based on neural network (ANN) where several network configurations are proposed to achieve the most suitable structure of the problem, while the other model concerned the Adaptive Neuro-Fuzzy Inference System (ANFIS). To enhance the results accuracy, the invalid input samples are filtered. According to the computational results of the two models, the ANFIS has delivered more accurate outputs characterized by a reduced mean squared error value compared to the ANN-based model.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.