2026
Authors
Simões E.; Simões A.C.; Rodrigues J.C.; Lourenço P.;
Publication
IFIP Advances in Information and Communication Technology
Abstract
Companies are increasingly adopting technologies such as Robotic Process Automation (RPA) to reduce costs and improve productivity. RPA is deployed in areas like accounting, payroll, and finance to automate business processes. While RPA does not necessarily result in unemployment, it has notable effects on employees and company governance. This study explores the impact of RPA implementation on employees and company governance, using a qualitative methodology based on thirteen semi-structured interviews with RPA experts from four multinational companies. The results indicate that the impacts of RPA vary depending on the automation strategy adopted (task-oriented or process-oriented). In task-oriented strategies, citizen developers often play a central role, contributing to rapid implementation. In contrast, process-oriented strategies tend to rely on professional developers and require more structured governance. The findings also point out that RPA influences not only task execution but also employee upskilling, job role redefinition, and the evolution of governance models. The study proposes an integrated framework linking automation strategy, governance, upskilling, and employee adaptation, offering both practical insights and theoretical contributions to digital transformation research and for managing risks and enhancing workforce capabilities. It also advances academic understanding by linking real-world RPA implementations to organisational and technological impacts.
2026
Authors
Ferreira, MC; da Silva, JFL; Abrantes, D; Hora, J; Felício, S; Gal?ao, T; Coimbra, MT;
Publication
Lecture Notes in Mobility
Abstract
This study focuses on providing meaningful information to vulnerable road users (VRUs) to support their objectives and perceptions while navigating urban spaces, employing a novel route planning concept. Through three focus group sessions, a comprehensive survey was conducted to identify the needs and concerns of VRUs, leading to the development of an integrated and collaborative mobile application for active mobility. The application encompasses route calculation, prioritizing safety, comfort, civic participation, and empathy. The solution aims to bridge citizen users and city managers, facilitating alerts, historical information on safety and comfort, and collaborative problem-solving and sharing of urban attractions. A prototype of the concept was developed and extensively tested by potential users, and subjective evaluation and feedback demonstrated the usefulness and added value of the integrated and collaborative approach. This study highlights the proposed solution relevance and differentiation from official alerts, user experiences, and civic participation, positioning it as a comprehensive solution for active mobility. © 2025 Elsevier B.V., All rights reserved.
2026
Authors
Currie, CSM; M'Hallah, R; Oliveira, BB;
Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Abstract
Car sharing, car clubs and short-term rentals could support the transition toward net zero but their success depends on them being financially sustainable for service providers and attractive to end users. Dynamic pricing could support this by incentivizing users while balancing supply and demand. We describe the usage of a round trip car sharing fleet by a continuous time Markov chain model, which reduces to a multi-server queuing model where hire duration is assumed independent of the hourly rental price. We present analytical and simulation optimization models that allow the development of dynamic pricing strategies for round trip car sharing systems; in particular identifying the optimal hourly rental price. The analytical tractability of the queuing model enables fast optimization to maximize expected hourly revenue for either a single fare system or a system where the fare depends on the number of cars on hire, while accounting for stochasticity in customer arrival times and durations of hire. Simulation optimization is used to optimize prices where the fare depends on the time of day or hire duration depends on price. We present optimal prices for a given customer population and show how the expected revenue and car availability depend on the customer arrival rate, willingness-to-pay distribution, dependence of the hire duration on price, and size of the customer population. The results provide optimal strategies for pricing of car sharing and inform strategic managerial decisions such as whether to use time-or state-dependent pricing and optimizing the fleet size.
2026
Authors
Santos, MJ; Jorge, D; Bonomi, V; Ramos, T; Póvoa, A;
Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH
Abstract
Today, logistics activities are driven by the pressing need to simultaneously increase efficiency, reduce costs, and promote sustainability. In our research, we tackle this challenge by adapting a general vehicle routing problem with deliveries and pickups to accommodate different types of customers. Customers requiring both delivery and pickup services are mandatory, while those needing only a pickup service (backhaul customers) are optional and are only visited if profitable. A mixed-integer linear programming model is formulated to minimize fuel consumption. This model can address various scenarios, such as allowing mandatory customers to be served with combined or separate delivery or pickup visits, and visiting optional customers either during or only after mandatory customer visits. An adaptive large neighborhood search is developed to solve instances adapted from the literature as well as to solve a real-case study of a beverage distributor. The results show the effectiveness of our approach, demonstrating the potential to utilize the available capacity on vehicles returning to the depot to create profitable and environmentally friendly routes, and so enhancing efficient, cost-effective, and sustainable logistics activities.
2026
Authors
Ramalho, Filipa Rente, FR,; Soares, António Lucas, AL,; null; Almeida, António Henrique, AH,; Oliveira, Manuel Fradinho, MF,;
Publication
IFIP Advances in Information and Communication Technology
Abstract
This paper evaluates an Augmented Reality (AR) solution designed to support quality control in a assembly line inspection station before body marriage at a European automotive manufacturer. A three-phase methodology was applied: an AS-IS assessment, a formative evaluation of an intermediate prototype, and a summative evaluation under real production conditions. The AR solution aimed to improve task standardization, non-value-added time (NVAT), and enhance operator accuracy. The results showed that operators successfully developed inspections using the AR tool, identifying and correcting non-conformities (NOKs) while maintaining task duration. Participants valued having contextual information directly in their field of vision and reported increased rigor and consistency. However, usability and ergonomic improvements were noted, such as headset weight, gesture interaction, and visibility over dark components. The findings highlight AR’s potential to support operator autonomy and accuracy in industrial environments while emphasizing the need for human-centered design and integration to ensure long-term adoption. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Granado, I; Silva, E; Carravilla, MA; Oliveira, JF; Hernando, L; Fernandes-Salvador, JA;
Publication
COMPUTERS & OPERATIONS RESEARCH
Abstract
Nowadays, the world's fishing fleet uses 20% more fuel to catch the same amount offish compared to 30 years ago. Addressing this negative environmental and economic performance is crucial due to stricter emission regulations, rising fuel costs, and predicted declines in fish biomass and body sizes due to climate change. Investment in more efficient engines, larger ships and better fuel has been the main response, but this is only feasible in the long term at high infrastructure cost. An alternative is to optimize operations such as the routing of a fleet, which is an extremely complex problem due to its dynamic (time-dependent) moving target characteristics. To date, no other scientific work has approached this problem in its full complexity, i.e., as a dynamic vehicle routing problem with multiple time windows and moving targets. In this paper, two bi-objective mixed linear integer programming (MIP) models are presented, one for the static variant and another for the time-dependent variant. The bi-objective approaches allow to trade off the economic (e.g., probability of high catches) and environmental (e.g., fuel consumption) objectives. To overcome the limitations of exact solutions of the MIP models, a greedy randomized adaptive search procedure for the multi-objective problem (MO-GRASP) is proposed. The computational experiments demonstrate the good performance of the MO-GRASP algorithm with clearly different results when the importance of each objective is varied. In addition, computational experiments conducted on historical data prove the feasibility of applying the MO-GRASP algorithm in a real context and explore the benefits of joint planning (collaborative approach) compared to a non-collaborative strategy. Collaborative approaches enable the definition of better routes that may select slightly worse fishing and planting areas (2.9%), but in exchange fora significant reduction in fuel consumption (17.3%) and time at sea (10.1%) compared to non-collaborative strategies. The final experiment examines the importance of the collaborative approach when the number of available drifting fishing aggregation devices (dFADs) per vessel is reduced.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.