2025
Authors
Klöckner, P; Teixeira, J; Montezuma, D; Fraga, J; Horlings, HM; Cardoso, JS; de Oliveira, SP;
Publication
npj Digit. Medicine
Abstract
2025
Authors
Klöckner, P; Teixeira, J; Montezuma, D; Cardoso, JS; Horlings, HM; de Oliveira, SP;
Publication
Deep Generative Models - 5th MICCAI Workshop, DGM4MICCAI 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings
Abstract
Virtual staining is a promising technique that uses deep generative models to recreate histological stains, providing a faster and more cost-effective alternative to traditional tissue chemical staining. Specifically for H&E-HER2 staining transfer, despite a rising trend in publications, the lack of sufficient public datasets has hindered progress in the topic. Additionally, it is currently unclear which model frameworks perform best for this particular task. In this paper, we introduce the HER2match dataset, the first publicly available dataset with the same breast cancer tissue sections stained with both H&E and HER2. Furthermore, we compare the performance of several Generative Adversarial Networks (GANs) and Diffusion Models (DMs), and implement a novel Brownian Bridge Diffusion Model for H&E-HER2 translation. Our findings indicate that, overall, GANs perform better than DMs, with only the BBDM achieving comparable results. Moreover, we emphasize the importance of data alignment, as all models trained on HER2match produced vastly improved visuals compared to the widely used consecutive-slide BCI dataset. This research provides a new high-quality dataset, improving both model training and evaluation. In addition, our comparison of frameworks offers valuable guidance for researchers working on the topic. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Montenegro, H; Cardoso, JS;
Publication
IEEE OPEN JOURNAL OF SIGNAL PROCESSING
Abstract
With the growing adoption of Deep Learning for imaging tasks in biometrics and healthcare, it becomes increasingly important to ensure privacy when using and sharing images of people. Several works enable privacy-preserving image sharing by anonymizing the images so that the corresponding individuals are no longer recognizable. Most works average images or their embeddings as an anonymization technique, relying on the assumption that the average operation is irreversible. Recently, cold diffusion models, based on the popular denoising diffusion probabilistic models, have succeeded in reversing deterministic transformations on images. In this work, we leverage cold diffusion to decompose superimposed images, empirically demonstrating that it is possible to obtain two or more identically-distributed images given their average. We propose novel sampling strategies for this task and show their efficacy on three datasets. Our findings highlight the risks of averaging images as an anonymization technique and argue for the use of alternative anonymization strategies.
2025
Authors
Neto, PC; Damer, N; Cardoso, JS; Sequeira, AF;
Publication
CoRR
Abstract
2025
Authors
Capozzi, L; Cardoso, JS; Rebelo, A;
Publication
IEEE ACCESS
Abstract
In recent years, the task of person re-identification (Re-ID) has improved considerably with the advances in deep learning methodologies. However, occluded person Re-ID remains a challenging task, as parts of the body of the individual are frequently hidden by various objects, obstacles, or other people, making the identification process more difficult. To address these issues, we introduce a novel data augmentation strategy using artificial occlusions, consisting of random shapes and objects from a small image dataset that was created. We also propose an end-to-end methodology for occluded person Re-ID, which consists of three branches: a global branch, a feature dropping branch, and an occlusion detection branch. Experimental results show that the use of random shape occlusions is superior to random erasing using our architecture. Results on six datasets consisting of three tasks (holistic, partial and occluded person Re-ID) demonstrate that our method performs favourably against state-of-the-art methodologies.
2025
Authors
Fernandes, L; Gonçalves, T; Matos, J; Nakayama, LF; Cardoso, JS;
Publication
Fairness of AI in Medical Imaging - Third International Workshop, FAIMI 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings
Abstract
Diabetic retinopathy (DR) is a leading cause of vision loss in working-age adults. While screening reduces the risk of blindness, traditional imaging is often costly and inaccessible. Artificial intelligence (AI) algorithms present a scalable diagnostic solution, but concerns regarding fairness and generalization persist. This work evaluates the fairness and performance of image-trained models in DR prediction, as well as the impact of disentanglement as a bias mitigation technique, using the diverse mBRSET fundus dataset. Three models, ConvNeXt V2, DINOv2, and Swin V2, were trained on macula images to predict DR and sensitive attributes (SAs) (e.g., age and gender/sex). Fairness was assessed between subgroups of SAs, and disentanglement was applied to reduce bias. All models achieved high DR prediction performance in diagnosing (up to 94% AUROC) and could reasonably predict age and gender/sex (91% and 77% AUROC, respectively). Fairness assessment suggests disparities, such as a 10% AUROC gap between age groups in DINOv2. Disentangling SAs from DR prediction had varying results, depending on the model selected. Disentanglement improved DINOv2 performance (2% AUROC gain), but led to performance drops in ConvNeXt V2 and Swin V2 (7% and 3%, respectively). These findings highlight the complexity of disentangling fine-grained features in fundus imaging and emphasize the importance of fairness in medical imaging AI to ensure equitable and reliable healthcare solutions. © 2025 Elsevier B.V., All rights reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.