Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Jaime Cardoso

2021

Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data - 4th International Workshop, iMIMIC 2021, and 1st International Workshop, TDA4MedicalData 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings

Authors
Reyes, M; Abreu, PH; Cardoso, JS; Hajij, M; Zamzmi, G; Paul, R; Thakur, L;

Publication
iMIMIC/TDA4MedicalData@MICCAI

Abstract

2019

SpaMHMM: Sparse Mixture of Hidden Markov Models for Graph Connected Entities

Authors
Pernes, D; Cardoso, JS;

Publication
International Joint Conference on Neural Networks, IJCNN 2019 Budapest, Hungary, July 14-19, 2019

Abstract

2019

Sparse Multi-Bending Snakes

Authors
Araújo, RJ; Fernandes, K; Cardoso, JS;

Publication
IEEE Trans. Image Process.

Abstract

2015

The vitality of pattern recognition and image analysis

Authors
Micó, L; Sanches, JM; Cardoso, JS;

Publication
Neurocomputing

Abstract

2023

Disentangled Representation Learning for Privacy-Preserving Case-Based Explanations

Authors
Montenegro, H; Silva, W; Cardoso, JS;

Publication
MEDICAL APPLICATIONS WITH DISENTANGLEMENTS, MAD 2022

Abstract
The lack of interpretability of Deep Learning models hinders their deployment in clinical contexts. Case-based explanations can be used to justify these models' decisions and improve their trustworthiness. However, providing medical cases as explanations may threaten the privacy of patients. We propose a generative adversarial network to disentangle identity and medical features from images. Using this network, we can alter the identity of an image to anonymize it while preserving relevant explanatory features. As a proof of concept, we apply the proposed model to biometric and medical datasets, demonstrating its capacity to anonymize medical images while preserving explanatory evidence and a reasonable level of intelligibility. Finally, we demonstrate that the model is inherently capable of generating counterfactual explanations.

2022

SYN-MAD 2022: Competition on Face Morphing Attack Detection Based on Privacy-aware Synthetic Training Data

Authors
Huber, M; Boutros, F; Luu, AT; Raja, K; Ramachandra, R; Damer, N; Neto, PC; Goncalves, T; Sequeira, AF; Cardoso, JS; Tremoco, J; Lourenco, M; Serra, S; Cermeno, E; Ivanovska, M; Batagelj, B; Kronovsek, A; Peer, P; Struc, V;

Publication
2022 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB)

Abstract
This paper presents a summary of the Competition on Face Morphing Attack Detection Based on Privacy-aware Synthetic Training Data (SYN-MAD) held at the 2022 International Joint Conference on Biometrics (IJCB 2022). The competition attracted a total of 12 participating teams, both from academia and industry and present in 11 different countries. In the end, seven valid submissions were submitted by the participating teams and evaluated by the organizers. The competition was held to present and attract solutions that deal with detecting face morphing attacks while protecting people's privacy for ethical and legal reasons. To ensure this, the training data was limited to synthetic data provided by the organizers. The submitted solutions presented innovations that led to outperforming the considered baseline in many experimental settings. The evaluation benchmark is now available at: https://github.com/marcohuber/SYN-MAD-2022.

  • 37
  • 63